Javascript is required
Search
Volume 2, Issue 4, 2023

Abstract

Full Text|PDF|XML

This study conducted a comprehensive analysis of the carbon components in $\mathrm{PM}_{2.5}$ particulate matter in Linfen City for the year 2020. Utilizing the thermal-optical transmittance (TOT) method, the mass concentrations of organic carbon (OC) and elemental carbon (EC) in $\mathrm{PM}_{2.5}$ were quantitatively assessed. Findings revealed seasonal variations in the concentrations of $\mathrm{OC}$ and EC. Specifically, concentrations in spring were registered at $4.45 \mu \mathrm{g} / \mathrm{m}^3$ for OC and $1.03 \mu \mathrm{g} / \mathrm{m}^3$ for EC; in summer, these were $3.89 \mu \mathrm{g} / \mathrm{m}^3$ and $0.74 \mu \mathrm{g} / \mathrm{m}^3$; in autumn, $6.01 \mu \mathrm{g} / \mathrm{m}^3$ and $1.30 \mu \mathrm{g} / \mathrm{m}^3$; escalating significantly in winter to $16.76 \mu \mathrm{g} / \mathrm{m}^3$ for OC and $4.24 \mu \mathrm{g} / \mathrm{m}^3$ for EC. This seasonal trend highlighted a notable peak in winter, with OC concentrations being 4.31 times, and EC concentrations 5.73 times, those observed in summer. The correlation analysis between OC and EC demonstrated the highest correlation in winter $\left(\mathrm{R}^2=0.961\right)$, suggesting similar sources for these components in the colder months, followed by autumn $\left(\mathrm{R}^2=0.936\right)$ and spring $\left(\mathrm{R}^2=0.848\right)$, with the least correlation observed in summer $\left(\mathrm{R}^2=0.584\right)$. The EC tracer method, employed to estimate secondary organic carbon (SOC) concentrations, indicated a seasonal pattern in SOC levels, with the highest concentrations occurring in winter, thereby suggesting a significant secondary pollution impact during this period. Moreover, the study identified meteorological conditions, particularly long-distance horizontal transport, as a primary influencer of winter pollution levels in Linfen City.

Abstract

Full Text|PDF|XML
The review provides a comprehensive overview of the application of membrane technology in addressing the challenges associated with water pollution and waste management. Membrane technology is a process used in various fields, primarily in filtration, separation, and purification applications. It involves the use of semi-permeable membranes to separate substances when a driving force is applied, such as pressure, concentration gradients, or electrical potential. The article highlights the role of membrane technology in sustainable remediation, focusing on its ability to remove contaminants from contaminated water sources. Various membrane-based processes, including reverse osmosis, nanofiltration, and ultrafiltration, are discussed in terms of their efficiency and effectiveness in achieving purified water and concentrated waste streams. It emphasizes the importance of recent trends in membrane technology for wastewater treatment, particularly in achieving high-quality effluent and meeting stringent regulatory standards. The integration of biological treatment with membrane filtration, as exemplified by membrane bioreactors (MBRs), is explored, along with their advantages in terms of biomass concentration, sludge reduction, and improved. The removal of suspended solids, pathogens, and micropollutants through membrane filtration is highlighted as a crucial aspect of wastewater treatment. Furthermore, the review article addresses the challenges and limitations associated with membrane technology, such as fouling, scaling, energy consumption, and membrane degradation. It discusses ongoing research efforts to develop sustainable membrane materials, advanced fouling control methods, and process optimization strategies to overcome these challenges. Overall, the review article provides valuable insights into the role of membrane technology in sustainable remediation and wastewater treatment, highlighting its potential for efficient water management, environmental protection, and resource recovery.
Open Access
Research article
Potential Impacts of Zone-Specific Mining on Karst
márton veress ,
zoltán unger
|
Available online: 12-04-2023

Abstract

Full Text|PDF|XML
This investigation delineates the impacts of mining on karst systems, with a focus on specific karst zones, namely the epikarst, the vadose zone, and the phreatic zone, which includes the epiphreatic zone. Mining activities, regardless of the karst area type, predominantly affect these zones. When mining occurs at the surface or within the epikarst, it results in the destruction of surface features and the disruption of the epikarst, thereby locally halting karstification processes. The extraction in the vadose zone can lead to surface alterations, characterized by collapses, the formation of depressions, and the modification of epikarst activity, ultimately impacting surface karstification and inducing atectonic changes on the surface. The exploitation of the phreatic zone is associated with the artificial lowering of the karst water table and the removal of materials from cavities and depressions. This study emphasizes the importance of understanding the zone-specific impacts of mining on karst systems, highlighting the need for tailored conservation and management strategies to mitigate these effects. The findings contribute to the broader understanding of karst dynamics and provide a foundation for future research on the sustainable management of karst environments in the context of mining activities.
Open Access
Research article
Inverse Analysis of Rock Mass Dynamic Parameters from Blasting Vibration Signals
yiran yan ,
aobo liu ,
junpeng gai ,
zhenyang xu
|
Available online: 12-24-2023

Abstract

Full Text|PDF|XML

The precision of determining rock mass mechanical parameters is notably impacted by mining blast activities. An advanced method for inverse analysis of these parameters, predicated upon measured blasting vibrations, has been developed. This approach employs a meticulous recognition of initial P-wave and S-wave arrivals within the vibrational energy spectrum. Utilizing principles from elastic wave theory, a novel framework has been established, correlating P-wave and S-wave velocities with dynamic characteristics of rock masses. The efficacy of this method has been substantiated through practical implementation, particularly in the Guanbaoshan Open-pit Iron Mine, Liaoning Province. Here, the derived density ratios were observed to range between 0.98 and 1.01, aligning closely with figures provided by authoritative research institutes. Additionally, the dynamic-to-static Poisson's ratio exhibited variations from 0.85 to 1.03, while the modulus of elasticity ratio dynamically to statically spanned from 2.0 to 2.6. These results, falling within anticipated theoretical ranges, underscore the robust applicability and accuracy of this method. The research contributes significantly to the domain of mining operations, particularly in optimizing blasting processes and enhancing the precision of mechanical parameter acquisition. It presents a pioneering approach, essential for addressing similar challenges in the mining sector.

Abstract

Full Text|PDF|XML
In the realm of civil engineering and structural analysis, the seismic resilience of infrastructure remains a critical area of research. This study delineates the seismic response assessment of a reinforced concrete bridge situated in Sibu, Sarawak, through the lens of finite element analysis (FEA). Embracing the robust capabilities of FEA, a comprehensive model of the reinforced concrete bridge is developed, enabling the simulation of its response to seismic forces. Notably, the seismic loading conditions are derived from the Chi-Chi earthquake time history data, a choice informed by the earthquake's significance in seismic research and the richness of its data, rather than its direct seismic comparability to Sarawak. The FEA, conducted using the Abaqus/CAE 6.14 software, meticulously models the bridge, incorporating varying peak ground acceleration (PGA) values of 0.10g, 0.20g, 0.50g, and 1.00g. Key structural response parameters, including maximum principal stress, acceleration, and displacement, are systematically extracted and analyzed. This meticulous approach uncovers the material resilience of the bridge, even under extreme seismic forces exemplified by a PGA of 1.00g. The integrative analysis, encompassing both static pushover and dynamic time history analyses, elucidates the structural integrity and performance of the reinforced concrete bridge in the face of seismic challenges. The findings not only contribute to the understanding of seismic impacts on reinforced concrete bridges but also pave the way for enhancing seismic design and resilience strategies in structural engineering.
- no more data -