Permanent Magnet Synchronous Motors (PMSMs) have garnered sustained attention over the past four decades due to their high efficiency, superior torque density, and dependable operational characteristics, making them highly suitable for a wide range of industrial applications. Accurate dynamic modelling of PMSMs is essential for performance evaluation and the development of advanced drive control strategies. Although previous studies have addressed customized modelling approaches for various PMSM types, a streamlined method for deriving model parameters from standard manufacturer specifications remains insufficiently explored. As a result, simulation studies are often disconnected from commercially available motor data, thereby limiting their practical relevance. In this study, the dynamic model of a PMSM is reformulated within the synchronous rotating reference frame (d-q axis) and implemented using mathematical function blocks in the MATLAB/Simulink environment. A systematic procedure is developed to extract key motor parameters from typical manufacturer data sheets. This approach bridges the gap between theoretical modeling and real-world motor implementation. The proposed modelling framework is validated using a standard 1 hp, 2.2 Nm, 1500 rpm PMSM, and its performance is benchmarked against the built-in Simulink PMSM blockset. Simulations are conducted to evaluate the mechanical output, rotor speed, and electromagnetic torque responses under step variations in load torque. The results exhibited strong agreement between the custom mathematical model and the blockset counterpart, confirming the accuracy and practical applicability of the parameter extraction methodology.