Javascript is required
Search
Volume 4, Issue 1, 2026

Abstract

Full Text|PDF|XML

Unmanned aerial vehicles (UAVs) have gained increasing importance due to their expanding application areas and operational flexibility. Selecting the most suitable UAV, however, represents a complex multi-criteria decision-making (MCDM) problem that involves numerous technical and performance-related factors. This study addresses the UAV selection problem by employing four distinct MCDM approaches: Evidential fuzzy MCDM based on Belief Entropy, Intuitionistic Fuzzy Dempster-Shafer Theory (DST), Spherical Fuzzy Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), and Type-2 Neutrosophic Fuzzy CRITIC-MABAC. Each method incorporates different fuzzy set theories, while a common seven-point linguistic scale is utilized to ensure consistency across models. The evaluation criteria were determined through a comprehensive literature review, and expert opinions were collected from experienced UAV pilots and technical personnel. The analysis identified the most suitable UAV alternative among the considered options. Sensitivity analyses were conducted to assess the robustness of the obtained results. The findings demonstrate that the proposed framework enables a simultaneous comparison of different fuzzy set environments on a unified linguistic scale. Overall, the results are consistent, reliable, and practically applicable, offering valuable insights and methodological contributions to the field of UAV selection and fuzzy MCDM applications.

- no more data -