Reliable lane perception is a core enabling function in industrial intelligent driving systems, providing essential structural constraints for downstream tasks such as lane keeping assistance, trajectory planning, and vehicle control. In real-world deployments, lane detection remains challenging due to complex road geometries, illumination variations, occlusions, and the limited computational resources of on-board platforms. This study presents Attention-Guided Cross-Layer Refinement Network (AG-CLRNet), a real-time lane perception framework designed for industrial intelligent driving applications. Built upon an anchor-based detection paradigm, the framework integrates adaptive multi-scale contextual fusion, channel–spatial attention refinement, and long-range dependency modeling to improve feature discrimination and structural continuity while maintaining computational efficiency. The proposed design strengthens the representation of distant and slender lane markings, suppresses background interference caused by shadows and pavement textures, and enhances global geometric consistency in curved and fragmented scenarios. Extensive experiments conducted on the CULane benchmark demonstrate that AG-CLRNet achieves consistent improvements in precision, recall, and F1 score over representative state-of-the-art methods, while sustaining real-time inference performance suitable for practical deployment. Ablation studies further confirm the complementary contributions of the proposed modules to robustness and structural stability under challenging conditions. Overall, AG-CLRNet provides a practical and deployable lane perception solution for industrial intelligent driving systems, offering a balanced trade-off between accuracy, robustness, and real-time performance in complex road environments.