Javascript is required
Search
Volume 3, Issue 2, 2025

Abstract

Full Text|PDF|XML

Equipment failure in paper mills represents a critical barrier to operational efficiency and the adoption of Industry 4.0 principles. To address this, a systematic literature review was conducted to identify the multifactorial determinants of such failures. A novel hybrid methodology was proposed, integrating the Functional Analysis Systems Technique (FAST), enhanced by Lean 5S (Sort “Seiri”, Set in Order “Seiton”, Shine “Seiso”, Standardize “Seiketsu”, Sustain “Shitsuke”) principles, to structure the qualitative data collection. The analysis was performed using a Pugh matrix, followed by a Principal Component Analysis (PCA) to extract knowledge systematically. This approach facilitated the development of a conceptual model for downtime causation. The PCA results indicate that two principal components collectively explain 58.5% of the observed variance in failure data. The f irst component was strongly correlated with maintenance practices and operational errors, while the second was associated with intrinsic equipment characteristics and their operating conditions. This data-driven modeling elucidates underlying correlations between disparate factors, providing a robust foundation for prioritizing targeted maintenance optimization actions. This research contributes to the field of industrial intelligence by demonstrating an original methodology for transforming qualitative systematic review data into a quantifiable analytical framework. The application of PCA to this corpus enables the identification of multidimensional interactions that are frequently overlooked in conventional analyses, thereby enriching root-cause failure analysis and informing strategic decision making for predictive maintenance. The identified factors underscore the imperative of a balanced integration between technical data and human factors for the successful digital transformation of production systems.

- no more data -