Javascript is required
Search
Volume 3, Issue 4, 2025

Abstract

Full Text|PDF|XML

In order to improve the durability of road structures, this study investigated the influence of temperatures, vehicle speeds, and axle configurations on pavement deflections with the PLAXIS 3D, a three-dimensional finite element modeling specifically developed for analyzing geotechnical engineering projects. A total of 32 models were developed, considering the temperatures of 4°C, 10°C, 20°C, and 30°C, when combined with the moving load velocities of 60, 80, 100, and 120 km/h. The effects of uneven distributions of axle loads were examined to capture the realistic condition of traffic loading. The results indicated that when the axle loads on both wheels were identical, the maximum pavement settlement occurred at the midpoint between them. Under unequal axle loading, the maximum settlement shifted to the wheel carrying the heavier load. This study revealed that a rising temperature reduced the strength of pavement materials, thus leading to a greater deflection. Nevertheless, higher vehicle speeds reduced pavement deflections due to decreased load–pavement interaction time. The findings highlighted the coupled effects of thermal conditions, traffic speeds, and load distributions on pavement performance, thus providing useful insights for the improved design and maintenance of sustainable road structures.

- no more data -