Javascript is required
Search
Volume 3, Issue 4, 2025

Abstract

Full Text|PDF|XML

In order to improve the durability of road structures, this study investigated the influence of temperatures, vehicle speeds, and axle configurations on pavement deflections with the PLAXIS 3D, a three-dimensional finite element modeling specifically developed for analyzing geotechnical engineering projects. A total of 32 models were developed, considering the temperatures of 4°C, 10°C, 20°C, and 30°C, when combined with the moving load velocities of 60, 80, 100, and 120 km/h. The effects of uneven distributions of axle loads were examined to capture the realistic condition of traffic loading. The results indicated that when the axle loads on both wheels were identical, the maximum pavement settlement occurred at the midpoint between them. Under unequal axle loading, the maximum settlement shifted to the wheel carrying the heavier load. This study revealed that a rising temperature reduced the strength of pavement materials, thus leading to a greater deflection. Nevertheless, higher vehicle speeds reduced pavement deflections due to decreased load–pavement interaction time. The findings highlighted the coupled effects of thermal conditions, traffic speeds, and load distributions on pavement performance, thus providing useful insights for the improved design and maintenance of sustainable road structures.

Open Access
Research article
Shaking Table Test Design for the Self-Installation Platform of Offshore Converter Stations
lihe wang ,
zhaorong ma ,
can zheng ,
zhiwei niu ,
renfeng zheng ,
fangjie li
|
Available online: 10-14-2025

Abstract

Full Text|PDF|XML
Offshore converter stations are the core equipment for large-scale transmission of energy from distant offshore wind farms. When designing and constructing converter station platforms in high seismic intensity regions, their seismic performance must be considered. Numerical simulation and shaking table model testing are two important methods for studying the structural dynamic characteristics and seismic response. The effectiveness of numerical simulations for investigating the seismic response of offshore converter station platforms needs to be validated through shaking table model tests. Due to the limitations of the shaking table's surface area and load capacity, the prototype structure must be scaled down based on similarity theory. To meet the test requirements, acrylic and aluminum alloy are selected as model materials for the pile legs and platform body, respectively. In order to simplify the model for testing, the pile legs are designed using a bending stiffness equivalence method, while the upper platform is designed to satisfy mass similarity and sufficient stiffness. The dynamic characteristics of the foundation-pile-soil interaction are equivalently modeled using numerical simulations. After the model is constructed, dynamic characteristic tests are performed, and the results are compared with the numerical simulation analysis of the prototype structure. The results indicate that the selected model materials and simplified design are reasonable, providing a useful reference for shaking table tests of similar offshore platforms.

Abstract

Full Text|PDF|XML
The optimization of tunnel blasting parameters and support designs is critical for enhancing both structural stability and engineering efficiency. This study employs the Holmquist-Johnson-Cook (HJC) numerical model to simulate the blasting process of the Xiahong Tunnel in China, with a particular focus on the vibration velocity and damage zones at various locations. A fluid-solid coupling method is applied to model the interaction between the surrounding rock and blasting forces, and the effects of different detonation sequences and radial uncoupling coefficients on the peak vibration velocities and damage domains are thoroughly examined. The results indicate that blasting from the outside to the inside results in a more cohesive damage domain compared to the traditional inside-out approach. Specifically, the peak vibration velocity of the surrounding rock during inside-out blasting reaches 161.4 cm/s, which is higher than the 82.2 cm/s observed with outside-in blasting. Therefore, the outside-in blasting sequence is identified as the more optimal strategy. Furthermore, an increase in the radial decoupling coefficient gradually reduces the damage domain, with the coefficient k = 2.0 showing no significant improvement in damage domain reduction. However, a decoupling coefficient that is too small leads to excessive over-excavation. Based on this analysis, the optimal radial decoupling coefficient is found to be k = 1.5, offering the most balanced damage domain reduction without causing over-excavation. The analysis also explores the influence of the initial lining thickness of sprayed concrete on the vibration characteristics of the surrounding rock. Both structural stability and economic considerations suggest an ideal thickness for the initial lining. The findings of this study provide valuable guidance for the subsequent implementation of tunnel blasting and support optimization in engineering practices.
- no more data -