Javascript is required
Search
Volume 2, Issue 3, 2023

Abstract

Full Text|PDF|XML

Safety of reservoir dams remains pivotal for societal stability, underscoring the significance of efficient emergency management strategies. This investigation focuses on Naban Reservoir, where the BREACH model was employed to simulate potential dam failures. By integrating one-dimensional and two-dimensional modeling approaches, a mathematical representation was developed to scrutinize flood progression in the adjacent region. Correlation coefficients for the devised model ranged from 0.945 to 0.986, with relative errors of -13.72%, -0.23%, -17.41%, and -15.44%. Comparisons indicated that observed flow rates align closely with simulated rates. Notably, significant land slippages surrounding the reservoir were not detected, implying that an enhanced downstream surge due to an upstream collapse is unlikely. Nevertheless, a breach in the main dam could result in catastrophic outcomes for downstream zones, particularly affecting infrastructure and communities along the Shangsi and Zaimiao Basins. Critical observation zones, such as Siyang Town in Shangshi County, Zaimiao Town in Shangshi County, and Nakan Town in Ningming County, were identified, emphasizing the need for enhanced precautionary measures to safeguard human lives, property, and societal stability. This research has paved the way for a novel flood early warning system tailored for the Naban Reservoir, ensuring timely predictions and alerts. Such advancements augment the disaster prevention capacity, offering valuable insights for mitigating risks in small to medium-sized reservoirs.

Abstract

Full Text|PDF|XML

In 2020, the world witnessed an unprecedented event: the outbreak of the COVID-19 pandemic, leading to significantly curtailed human activities. This study sought to elucidate the potential spatial ramifications of this on land surface temperatures (LSTs) in the renowned tourist locale of Kuta, Bali, Indonesia. Landsat 8 satellite imagery from 2019-2021, complemented by spatial data from local agencies, was employed for this analysis. LST processing was achieved through the calculation of Spectral Radiance/Top of Atmosphere, Brightness Temperature, and the conversion of Brightness Temperature to actual LST. In 2019, observed LSTs in Kuta District varied from 20.1℃ to over 32℃, with the predominant temperature range being 28.1℃ - 31.99℃, covering an expansive 1487.03 ha or 70.26% of the entire area. By 2020, a notable decline was discerned with temperatures peaking at 27.99 ℃ and the most prevalent temperature range being 24.1℃ - 27.99℃, encompassing an area of 1105.46 ha (52.23%). Contrarily, 2021 experienced an upswing, with the apex temperature touching 31.99℃, and the dominant temperature bracket being 28.1℃ - 31.99℃, spanning 974.90 ha (46.06%). A discernable correlation was identified between tourism activities and LST fluctuations, with temperature reductions conspicuous in zones endowed with tourism amenities.

Open Access
Research article
Effects of Spacing-to-Burden Ratio and Joint Angle on Rock Fragmentation: An Unmanned Aerial Vehicle and AI Approach in Overburden Benches
dasyapu ramesh ,
nidumukkala sri chandrahas ,
musunuri sesha venkatramayya ,
malothu naresh ,
pradeep talari ,
dhangeti uma venkata durga prasad ,
kannavena sravan kumar ,
vasala vinod kumar
|
Available online: 09-27-2023

Abstract

Full Text|PDF|XML
In quarrying and mining operations, the results of the blasting process profoundly influence subsequent processes. Two primary categories dictate blast outcomes: controllable and non-controllable factors. For optimal fragmentation, it's pivotal that controllable variables, notably blast geometry and explosive attributes, are meticulously planned in correlation with non-controllable ones, such as geological aspects. In this study, the influence of blast design parameters on rock mass was investigated by examining the observable characteristics of joints and bedding planes on rock surfaces. Information extraction from these discontinuities was facilitated through cloud data processing. Within the scope of the research, 12 synchronized blasts were executed in the Basanth Nagar Limestone Mine (BNLM), tailored to its inherent joints. Results indicated that the spacing-to-burden ratio, powder factor, and joint angle significantly influenced the mean fragment size. An inverse relationship was observed between the spacing-to-burden ratio and the mean fragment size; optimal ratios for superior fragmentation were found between 1.25 and 1.3. Joint angles ranging between 75° and 80° were associated with optimal fragmentation, whereas angles exceeding 80° yielded larger rock boulders. Effective powder factors ranged from 0.36 to 0.47, with the necessity of the powder factor for rock fracturing being heavily dependent on the joint angle of the rock.

Abstract

Full Text|PDF|XML

Utilising scanning electron microscopy (SEM) and X-ray powder diffraction (XRD), the morphological and phase composition characteristics of waste incineration fly ash were meticulously analysed. Morphological evaluations revealed a predominant presence of irregularly shaped particles, encountering a spectrum of structures inclusive of polycrystalline polymers and amorphous forms. Additional particle shapes encompassed polygons, strips, blocks, and flakes, while a notable high porosity between particles and a markedly rough surface were observed. Despite the scarcity of complete crystals within the ash, the majority manifested as polycrystalline polymers and amorphous forms, indicating the structural complexity intrinsic to waste incineration fly ash. Through the deployment of chemical continuous extraction technology, forms, migrations, and transformation laws pertaining to rare earth elements (REEs) in fly ash were elucidated. In three fly ash samples analysed for REEs, the most abundant state was identified as the residual, succeeded by the Fe-Mn oxide-bound state and minimally, the carbonate-bound state. Amongst all REEs, Ce exhibited the highest prevalence, followed by La, Y, Nd, Gd, and other elements. Furthermore, the source of waste and the respective incineration process markedly influenced REEs content.

Abstract

Full Text|PDF|XML

This research delineates a numerical elucidation concerning the flow through an embankment, utilising PLAXIS2D software, and underscores the pivotal influence of soil composition—encompassing gravel, sand, and clay—on the structural resilience of embankments during seismic events. Different material models, incorporating the UBC3D-PLM for sand and the Hardening Soil (HS) small constitutive models for gravel and clay, were strategically employed to replicate embankment behaviours, ensuring a meticulous simulation of distinct soil types. The objective herein was to scrutinise the impact of dynamic loads and soil typologies on pertinent variables: settlements, lateral displacements, and excess pore water pressure engendered within the embankment. A comprehensive series of 2D finite element models, each representative of a specific soil type, were formulated and subsequently subjected to an earthquake record for dynamic analysis. It was discerned that embankments constituted from sand and gravel exhibited a pronounced settlement under dynamic loads, relative to those formulated from clay, primarily attributable to the absence of cohesion forces, augmented porosity, and diminished energy dissipation efficacy. Such factors render sand and gravel more prone to compression and settlement upon exposure to dynamic loads. Moreover, embankments fabricated from sand were identified to generate superior pore pressures compared to their clay or gravel counterparts, a phenomenon attributable to sand’s compressibility which can engender augmented volumetric strains and initiate pumping phenomena, thereby elevating pore pressures. In contrast, gravel and clay materials demonstrated enhanced drainage capabilities and reduced compressibility, facilitating the proficient dissipation of excess pore pressures.

- no more data -