Javascript is required
Search
/
/
Journal of Operational and Strategic Analytics
JISC
Journal of Operational and Strategic Analytics (JOSA)
JOTE
ISSN (print): 2959-0094
ISSN (online): 2959-0108
Submit to JOSA
Review for JOSA
Propose a Special Issue
Current State
Issue
Volume
2024: Vol. 2
Archive
Home

Journal of Operational and Strategic Analytics (JOSA) is a distinguished academic journal, specializing in operational and strategic analytics. It uniquely bridges rigorous academic research with practical applications, making it a valuable resource for both scholars and industry practitioners. JOSA covers a diverse range of topics, including data analysis, strategic decision-making processes, and the application of analytics in various organizational contexts. The journal is particularly noted for its exploration of how emerging technologies like artificial intelligence and machine learning are influencing strategic analytics. This focus not only provides insights into current trends but also into future challenges and opportunities in the field. Published quarterly by Acadlore, the journal typically releases its four issues in March, June, September, and December each year.

  • Professional Service - Every article submitted undergoes an intensive yet swift peer review and editing process, adhering to the highest publication standards.

  • Prompt Publication - Thanks to our proficiency in orchestrating the peer-review, editing, and production processes, all accepted articles see rapid publication.

  • Open Access - Every published article is instantly accessible to a global readership, allowing for uninhibited sharing across various platforms at any time.

Editor(s)-in-chief(1)
seyyed ahmad edalatpanah
Ayandegan Institute of Higher Education, Iran
s.a.edalatpanah@aihe.ac.ir | website
Research interests: Mathematical Programming; Operational Research; Numerical Modeling; Strategic Analytics; Decision Support Systems; Uncertainty Theories; Soft Computing

Aims & Scope

Aims

Journal of Operational and Strategic Analytics (JOSA) is a premier open-access journal that specializes in data-driven analysis and decision-making in the fields of statistics, computer programming, and operations research. Its mission is to enhance theoretical and practical understanding of problem-solving in various contexts, including individual, business, organizational, governmental, and societal levels. JOSA welcomes diverse submissions like reviews, research papers, and short communications, including Special Issues on specific topics. The journal is distinct for its comprehensive approach, offering insights into the application of analytics across various organizations and entities.

JOSA encourages in-depth publication of both theoretical and experimental results, with no constraints on paper length to ensure detailed and reproducible findings. Unique features of the journal include:

  • Every publication benefits from prominent indexing, ensuring widespread recognition.

  • A distinguished editorial team upholds unparalleled quality and broad appeal.

  • Seamless online discoverability of each article maximizes its global reach.

  • An author-centric and transparent publication process enhances submission experience.

Scope

JOSA offers a broad and comprehensive scope that distinctively positions it within the academic community, encompassing a wide array of topics in operational and strategic analytics:

  • Operational and Strategic Analysis: Exploring advanced methodologies in operational research and strategic analytics, focusing on optimizing business processes and decision-making strategies.

  • Strategic Planning and Management: Covering aspects of strategic planning, including formulation, implementation, and evaluation within various organizational contexts.

  • Business Analytics and Management: Delving into the application of analytics in business management, including performance analysis, market trends, and consumer behavior.

  • Problem Structuring Methods (PSMs): Investigating methodologies for identifying, structuring, and analyzing complex decision-making scenarios in organizational settings.

  • Knowledge and Information Management: Focusing on effective management of knowledge resources and information systems in organizations to enhance decision-making and strategic planning.

  • Decision Analytics and Systems: Examining systems and tools designed to improve the quality and efficiency of decision-making processes in businesses and organizations.

  • Data-Driven Analysis: Emphasizing the role of data in quantitative and qualitative analysis to guide operational and strategic decisions.

  • Digitalizing and Emerging Technologies: Exploring the impact of digital transformation and emerging technologies like AI, IoT, and blockchain on operational and strategic planning.

  • Accounting and Quantitative Finance: Applying quantitative methods to accounting and financial decision-making, including risk assessment, investment analysis, and financial modeling.

  • Health and Tourism Management: Investigating the application of operational and strategic analytics in the health and tourism sectors, focusing on improving service delivery and customer satisfaction.

  • Project and Risk Management: Covering the principles and practices of effective project management and risk mitigation strategies in various industries.

  • Complexity and Uncertainty Management: Addressing methods for managing complexity and uncertainty in business operations and strategic planning.

  • Performance Efficiency: Analyzing strategies and tools for enhancing organizational performance, productivity, and operational efficiency.

  • Innovative Applications of Decision Science: Showcasing novel applications of decision science in emerging areas and new themes, expanding the boundaries of operational and strategic analytics.

Articles
Recent Articles
Most Downloaded
Most Cited

Abstract

Full Text|PDF|XML
This paper investigates the search for an exact analytic solution to a temporal first-order differential equation that represents the number of customers in a non-stationary or time-varying $M / D / 1$ queueing system. Currently, the only known solution to this problem is through simulation. However, a study proposes a constant ratio, $\beta$ (Ismail's ratio), that relates the time-dependent mean arrival and mean service rates, offering an exact analytical solution. The stability dynamics of the time-varying $M / D / 1$ queueing system are then examined numerically in relation to time, $\beta$, and the queueing parameters. On another note, many potential queueing-theoretic applications to traffic management optimization are provided. The paper concludes with a summary, combined with open problems and future research pathways.
Open Access
Research article
Addressing the Crucial Factors Affecting the Implementation of Carbon Credit Concept Using a Comprehensive Decision-Making Analysis: A Case Study
qian su ,
yanjun qiu ,
mouhamed bayane bouraima ,
babatounde ifred paterne zonon ,
ibrahim badi ,
ndiema kevin maraka
|
Available online: 09-24-2024

Abstract

Full Text|PDF|XML
As global focus on climate change intensifies, carbon credits have become an important tool for reducing greenhouse gas emissions. Africa, with its abundant natural resources and potential for sustainable development, is well-positioned to capitalize on this growing market. This article explores how Africa can enhance its participation in the carbon credit market, transforming environmental initiatives into economic opportunities by addressing key implementation challenges. By utilizing the Stepwise Weight Assessment Ratio Analysis (SWARA) method within an interval-valued spherical fuzzy (IVSF) framework, the study supports collective decision-making. It identifies three crucial factors: access to financing issue, the absence of clear policies and legal frameworks, and the lack of capacity and expertise within governments, businesses, and communities. The research provides practical recommendations for governments aiming to effectively implement the carbon credit concept.

Abstract

Full Text|PDF|XML
The COVID-19 pandemic has prompted extensive modeling efforts worldwide, aimed at understanding its progression and the myriad factors influencing its spread across diverse communities. The necessity for tailored control measures, varying significantly by region, became apparent early in the pandemic, leading to the implementation of diverse strategies to manage the virus both in the short and long term. The World Health Organization (WHO) has faced considerable challenges in mitigating the impact of COVID-19, necessitating adaptable and localized public health responses. Traditional mathematical models, often employing classical integer-order derivatives with real numbers, have been instrumental in analyzing the virus's spread; however, these models inadequately address the fading memory effects inherent in such complex scenarios. To overcome these limitations, fuzzy sets (FSs) were introduced, offering a robust framework for managing the uncertainty that characterizes the pandemic’s dynamics. This research introduces innovative methods based on complex Fermatean FSs (CFFSs), alongside their corresponding geometric aggregation operators, including the complex Fermatean fuzzy weighted geometric aggregation (CFFWGA) operator, the complex Fermatean fuzzy ordered weighted geometric aggregation (CFFOWGA) operator, and the complex Fermatean fuzzy hybrid geometric aggregation (CFFHGA) operator. These advanced techniques are proposed as effective tools in the strategic decision-making process for reducing the spread of COVID-19. A compelling case study on COVID-19 vaccine selection was presented, demonstrating the practical applicability and superiority of these methods, effectively bridging theoretical models with real-world applications.

Abstract

Full Text|PDF|XML
Confidence sets provide a robust method for addressing the uncertainty inherent in the membership degrees of elements within fuzzy sets (FSs). These sets enhance the capability of FSs to manage imprecise or uncertain data systematically. Analogous to repeated experimentation, the interpretation of confidence sets remains valid before sample observation. However, once the sample is examined, all confidence sets exclusively encompass parameter values of either 1 or 0. This study introduces novel techniques in the domain of confidence levels, specifically the Confidence Complex Polytopic Fuzzy Weighted Averaging (CCPoFWA) operator, confidence complex polytopic fuzzy ordered weighted averaging (CCPoFOWA) operator, and Confidence Complex Polytopic Fuzzy Hybrid Averaging (CCPoFHA) operator. These aggregation operators are indispensable tools in data analysis and decision-making, aiding in the understanding of complex systems across diverse fields. They facilitate the extraction of valuable insights from extensive datasets and streamline the presentation of information to enhance decision support. The efficacy and utility of the proposed methods are demonstrated through a detailed illustrative example, underscoring their potential in strategic decision-making for the placement of nuclear power plants in Pakistan.

Abstract

Full Text|PDF|XML
The pressing need to reduce reliance on petroleum in the energy sector and the increasing demand for environmental protection are driving research and practical endeavors in the management of renewable supply chains. Professionals, global institutions and scholars have widely acknowledged the importance of studying the correlation, between the performance of supply chains and renewable energy sources. It's important to delve into the articles in terms of the methodologies that have been used, the principal concerns addressed, the specific renewable energy sources focused on, and the performance indicators employed to optimize supply chains for renewable energies. This paper provides an analysis that improves the understanding of research in the realm of quantitative decision making for renewable energy supply chains. The analysis commences by searching for articles published. Subsequently, they are narrowed down to those that are most relevant. The article also addresses knowledge gaps in the literature. The findings provide a reference for researchers who are considering conducting studies in this area.
Open Access
Research article
Leveraging Self-Management for Enhanced Productivity: Insights from Tehran's Water Sector
sahand abdinematabad ,
roghaye ebadikhah ,
reza raeinojehdehi
|
Available online: 05-07-2024

Abstract

Full Text|PDF|XML
This study was undertaken to elucidate the influence of self-management on the productivity levels of personnel within the Water and Wastewater Department, District 2, Tehran, utilizing a descriptive survey method that engaged 119 respondents. The assessment was founded on the administration of meticulously validated questionnaires, with subsequent statistical analysis conducted using Statistical Package for the Social Sciences (SPSS). The analysis included the Kolmogorov-Smirnov test to confirm the normal distribution of the variables, namely, self-management strategies and productivity levels, and the Pearson-Spearman tests to evaluate correlations. The findings, underscored by Cronbach's Alpha values of 0.879 for self-management strategies and 0.906 for productivity levels, confirmed the hypothesis of a significant positive impact of self-management on workforce productivity. Notably, the natural reward strategy was identified as having the least effect on ameliorating workplace conditions. This investigation contributes to the body of knowledge by highlighting the critical role of self-management practices in enhancing the efficiency of public sector operations. The insights garnered from this study pave the way for the implementation of strategic self-management practices aimed at boosting productivity within public sector entities.
Open Access
Research article
Optimizing Decision-Making Through Customer-Centric Market Basket Analysis
md jiabul hoque ,
md. saiful islam ,
syed abrar mohtasim
|
Available online: 04-29-2024

Abstract

Full Text|PDF|XML
In the realm of understanding consumer purchasing behaviors and refining decision-making across diverse sectors, Market Basket Analysis (MBA) emerges as a pivotal technique. Traditional algorithms, such as Apriori and Frequent Pattern Growth (FP-Growth), face challenges with computational efficiency, particularly under low minimal support settings, which precipitates an excess of weak association rules. This study introduces an innovative approach, termed Customer-Centric (CC)-MBA, which enhances the identification of robust association rules through the integration of consumer segmentation. By employing Recency, Frequency, and Monetary (RFM) analysis coupled with K-means clustering, customers are categorized based on their purchasing patterns, focusing on segments of substantial value. This targeted approach yields association rules that are not only more relevant but also more actionable compared to those derived from conventional MBA methodologies. The superiority of CC-MBA is demonstrated through its ability to discern more significant association rules, as evidenced by enhanced metrics of support and confidence. Additionally, the effectiveness of CC-MBA is further evaluated using lift and conviction metrics, which respectively measure the observed co-occurrence ratio to that expected by chance and the strength of association rules beyond random occurrences. The application of CC-MBA not only streamlines the analytical process by reducing computational demands but also provides more nuanced insights by prioritizing high-value customer segments. The practical implications of these findings are manifold; businesses can leverage this refined understanding to improve product positioning, devise targeted promotions, and tailor marketing strategies, thereby augmenting consumer satisfaction and facilitating revenue growth.

Abstract

Full Text|PDF|XML
An innovative framework is introduced for the enhancement of efficiency within emergency departments (EDs), utilizing an integration of simulation and fuzzy Multi-Criteria Decision-Making (MCDM). A discrete event simulation (DES) model was developed, capturing the intricate dynamics characteristic of ED operations with high fidelity. This model's integration with the Analytic Hierarchy Process (AHP) and the Elimination and Choice Expressing Reality (ELECTRE) method, within a fuzzy context, facilitated a critical evaluation and optimization of the decision-making processes inherent in EDs. The incorporation of these methodologies yielded significant improvements in patient flow and service quality, highlighting the substantial potential of marrying simulation with fuzzy MCDM to achieve operational excellence in healthcare settings. The study stands as a contribution to the enhancement of ED operations, offering a versatile methodology with potential for adaptation across diverse healthcare environments. This approach underscores the imperative of employing a nuanced, integrated strategy to navigate the complexities of healthcare service delivery, ensuring an equilibrium between operational efficiency and the quality of patient care.

Abstract

Full Text|PDF|XML

In the realm of cybersecurity, the formulation of comprehensive strategies is imperative for multinational corporations to protect against pervasive cyber threats. Recent developments in the field of intuitionistic multi-fuzzy sets (IMFSs) have heralded q-rung orthopair multi-fuzzy sets (MFSs) as a pivotal tool for encapsulating ambiguity and uncertainty within complex scenarios. The essence of this study lies in the introduction of two innovative distance measures tailored for q-rung orthopair MFSs (q-ROM$^{k}$FSs) of dimension k, enhancing the capacity to delineate distinctions between such sets effectively. Employing score functions pertinent to q-ROM$^{k}$FSs, this research extends its application to the sphere of Multi-Attribute Decision Making (MADM), presenting a methodological advancement in decision-making processes. The efficacy of the proposed measures is elucidated through a comparative analysis with existing methodologies in MADM, thereby underscoring the superiority of the introduced approach. This investigation not only contributes to the enrichment of the theoretical underpinnings of q-ROMFSs but also propels their practical application in cybersecurity strategy formulation for multinational entities. The study employs the Euclidean and Hamming distance measures as benchmarks, supplemented by the development of a score and accuracy function, to furnish a comprehensive tool for addressing cybersecurity challenges.

Abstract

Full Text|PDF|XML
In the realm of general insurance in India, an econometric investigation was conducted to estimate the revenue efficiency across a selection of 15 prominent, diversified general insurance entities for the fiscal years 2011-12 to 2016-17. Utilizing a semi-parametric methodology, the revenue frontier was constructed under the GAM framework, while the variance components were estimated employing the method of moments. This analysis further explored the influence of revenue efficiency on critical profitability metrics, namely return on equity (ROE) and return on assets (ROA), through the application of instrumental variable regression. The findings provide pivotal insights into the dynamics of revenue efficiency and its consequential impact on the financial performance of general insurance companies in India, offering a substantial contribution to the literature on insurance economics and the methodology of efficiency measurement. The research underscores the significance of adopting semi-parametric models for a nuanced understanding of revenue efficiency, thus paving the way for enhanced strategic decision-making in the insurance sector.

Abstract

Full Text|PDF|XML
The Spherical fuzzy rough set (SFRS), which is based on approximations and is handled in this work, is a key idea for handling uncertainty when data is taken from real-world situations. The most adaptable operational laws based on the parameter for fuzzy frameworks are the Aczel-Alsina t-norm (AATN) and Aczel-Alsina t-conorm (AATCN), which are crucial for data interpolation. In this paper, operators based on AATN and AATCN are developed: spherical fuzzy rough Aczel-Alsina weighted geometric (SFRAAWG), spherical fuzzy rough Aczel-Alsina ordered weighted geometric (SFRAAOWG), and spherical fuzzy rough Aczel-Alsina hybrid weighted geometric (SFRAAHWG). A few fundamental properties of the generated SFRAAWG, SFRAAOWG, and SFRAAHWG operators are defined and given examples. The multi-criteria decision-making (MADM) problem is applied to the developed SFRAAWG operator. Additionally, the sensitivity of the SFRAAG operator is examined. The developed AOs are compared to a few pre-existing AOs and their significance is evaluated.

Abstract

Full Text|PDF|XML
This investigation explores the scheduling of $n$ jobs on a single machine, where each job possesses a common due date, and processing time is characterized by pentagonal fuzzy numbers (PFNs). The primary objective is to minimize the aggregate of inventory holding and penalty costs, addressing the critical impact of earliness and tardiness on profitability. It is identified that earliness leads to increased inventory carrying costs and potential degradation in product quality, whereas tardiness undermines customer goodwill and inflicts reputational damage through delayed payments. Consequently, the scheduling dilemma that seeks to minimize the combined penalties of earliness and tardiness, whilst adhering to a common due date on a single machine, emerges as a pivotal and challenging endeavor in optimizing goods delivery within production settings. Recognized as a non-deterministic polynomial-time hardness (NP-hard) problem, this task underscores the complexity and competitive nature inherent in manufacturing operations. To navigate the uncertainties embedded in this problem, a fuzzy logic approach, augmented by a heuristic algorithm, is employed. Through this methodology, the problem is addressed in a manner that encapsulates the vagueness and imprecision inherent in processing time, thereby facilitating more resilient and adaptable scheduling decisions. The efficacy of this approach is demonstrated via a computational example, underscoring its potential to enhance decision-making in the realm of job scheduling.
load more...
- no more data -
- no more data -