Confidence sets provide a robust method for addressing the uncertainty inherent in the membership degrees of elements within fuzzy sets (FSs). These sets enhance the capability of FSs to manage imprecise or uncertain data systematically. Analogous to repeated experimentation, the interpretation of confidence sets remains valid before sample observation. However, once the sample is examined, all confidence sets exclusively encompass parameter values of either 1 or 0. This study introduces novel techniques in the domain of confidence levels, specifically the Confidence Complex Polytopic Fuzzy Weighted Averaging (CCPoFWA) operator, confidence complex polytopic fuzzy ordered weighted averaging (CCPoFOWA) operator, and Confidence Complex Polytopic Fuzzy Hybrid Averaging (CCPoFHA) operator. These aggregation operators are indispensable tools in data analysis and decision-making, aiding in the understanding of complex systems across diverse fields. They facilitate the extraction of valuable insights from extensive datasets and streamline the presentation of information to enhance decision support. The efficacy and utility of the proposed methods are demonstrated through a detailed illustrative example, underscoring their potential in strategic decision-making for the placement of nuclear power plants in Pakistan.
The pressing need to reduce reliance on petroleum in the energy sector and the increasing demand for environmental protection are driving research and practical endeavors in the management of renewable supply chains. Professionals, global institutions and scholars have widely acknowledged the importance of studying the correlation, between the performance of supply chains and renewable energy sources. It's important to delve into the articles in terms of the methodologies that have been used, the principal concerns addressed, the specific renewable energy sources focused on, and the performance indicators employed to optimize supply chains for renewable energies. This paper provides an analysis that improves the understanding of research in the realm of quantitative decision making for renewable energy supply chains. The analysis commences by searching for articles published. Subsequently, they are narrowed down to those that are most relevant. The article also addresses knowledge gaps in the literature. The findings provide a reference for researchers who are considering conducting studies in this area.
This study was undertaken to elucidate the influence of self-management on the productivity levels of personnel within the Water and Wastewater Department, District 2, Tehran, utilizing a descriptive survey method that engaged 119 respondents. The assessment was founded on the administration of meticulously validated questionnaires, with subsequent statistical analysis conducted using Statistical Package for the Social Sciences (SPSS). The analysis included the Kolmogorov-Smirnov test to confirm the normal distribution of the variables, namely, self-management strategies and productivity levels, and the Pearson-Spearman tests to evaluate correlations. The findings, underscored by Cronbach's Alpha values of 0.879 for self-management strategies and 0.906 for productivity levels, confirmed the hypothesis of a significant positive impact of self-management on workforce productivity. Notably, the natural reward strategy was identified as having the least effect on ameliorating workplace conditions. This investigation contributes to the body of knowledge by highlighting the critical role of self-management practices in enhancing the efficiency of public sector operations. The insights garnered from this study pave the way for the implementation of strategic self-management practices aimed at boosting productivity within public sector entities.
In the realm of understanding consumer purchasing behaviors and refining decision-making across diverse sectors, Market Basket Analysis (MBA) emerges as a pivotal technique. Traditional algorithms, such as Apriori and Frequent Pattern Growth (FP-Growth), face challenges with computational efficiency, particularly under low minimal support settings, which precipitates an excess of weak association rules. This study introduces an innovative approach, termed Customer-Centric (CC)-MBA, which enhances the identification of robust association rules through the integration of consumer segmentation. By employing Recency, Frequency, and Monetary (RFM) analysis coupled with K-means clustering, customers are categorized based on their purchasing patterns, focusing on segments of substantial value. This targeted approach yields association rules that are not only more relevant but also more actionable compared to those derived from conventional MBA methodologies. The superiority of CC-MBA is demonstrated through its ability to discern more significant association rules, as evidenced by enhanced metrics of support and confidence. Additionally, the effectiveness of CC-MBA is further evaluated using lift and conviction metrics, which respectively measure the observed co-occurrence ratio to that expected by chance and the strength of association rules beyond random occurrences. The application of CC-MBA not only streamlines the analytical process by reducing computational demands but also provides more nuanced insights by prioritizing high-value customer segments. The practical implications of these findings are manifold; businesses can leverage this refined understanding to improve product positioning, devise targeted promotions, and tailor marketing strategies, thereby augmenting consumer satisfaction and facilitating revenue growth.
An innovative framework is introduced for the enhancement of efficiency within emergency departments (EDs), utilizing an integration of simulation and fuzzy Multi-Criteria Decision-Making (MCDM). A discrete event simulation (DES) model was developed, capturing the intricate dynamics characteristic of ED operations with high fidelity. This model's integration with the Analytic Hierarchy Process (AHP) and the Elimination and Choice Expressing Reality (ELECTRE) method, within a fuzzy context, facilitated a critical evaluation and optimization of the decision-making processes inherent in EDs. The incorporation of these methodologies yielded significant improvements in patient flow and service quality, highlighting the substantial potential of marrying simulation with fuzzy MCDM to achieve operational excellence in healthcare settings. The study stands as a contribution to the enhancement of ED operations, offering a versatile methodology with potential for adaptation across diverse healthcare environments. This approach underscores the imperative of employing a nuanced, integrated strategy to navigate the complexities of healthcare service delivery, ensuring an equilibrium between operational efficiency and the quality of patient care.
In the realm of cybersecurity, the formulation of comprehensive strategies is imperative for multinational corporations to protect against pervasive cyber threats. Recent developments in the field of intuitionistic multi-fuzzy sets (IMFSs) have heralded q-rung orthopair multi-fuzzy sets (MFSs) as a pivotal tool for encapsulating ambiguity and uncertainty within complex scenarios. The essence of this study lies in the introduction of two innovative distance measures tailored for q-rung orthopair MFSs (q-ROM$^{k}$FSs) of dimension k, enhancing the capacity to delineate distinctions between such sets effectively. Employing score functions pertinent to q-ROM$^{k}$FSs, this research extends its application to the sphere of Multi-Attribute Decision Making (MADM), presenting a methodological advancement in decision-making processes. The efficacy of the proposed measures is elucidated through a comparative analysis with existing methodologies in MADM, thereby underscoring the superiority of the introduced approach. This investigation not only contributes to the enrichment of the theoretical underpinnings of q-ROMFSs but also propels their practical application in cybersecurity strategy formulation for multinational entities. The study employs the Euclidean and Hamming distance measures as benchmarks, supplemented by the development of a score and accuracy function, to furnish a comprehensive tool for addressing cybersecurity challenges.
In the realm of general insurance in India, an econometric investigation was conducted to estimate the revenue efficiency across a selection of 15 prominent, diversified general insurance entities for the fiscal years 2011-12 to 2016-17. Utilizing a semi-parametric methodology, the revenue frontier was constructed under the GAM framework, while the variance components were estimated employing the method of moments. This analysis further explored the influence of revenue efficiency on critical profitability metrics, namely return on equity (ROE) and return on assets (ROA), through the application of instrumental variable regression. The findings provide pivotal insights into the dynamics of revenue efficiency and its consequential impact on the financial performance of general insurance companies in India, offering a substantial contribution to the literature on insurance economics and the methodology of efficiency measurement. The research underscores the significance of adopting semi-parametric models for a nuanced understanding of revenue efficiency, thus paving the way for enhanced strategic decision-making in the insurance sector.
The Spherical fuzzy rough set (SFRS), which is based on approximations and is handled in this work, is a key idea for handling uncertainty when data is taken from real-world situations. The most adaptable operational laws based on the parameter for fuzzy frameworks are the Aczel-Alsina t-norm (AATN) and Aczel-Alsina t-conorm (AATCN), which are crucial for data interpolation. In this paper, operators based on AATN and AATCN are developed: spherical fuzzy rough Aczel-Alsina weighted geometric (SFRAAWG), spherical fuzzy rough Aczel-Alsina ordered weighted geometric (SFRAAOWG), and spherical fuzzy rough Aczel-Alsina hybrid weighted geometric (SFRAAHWG). A few fundamental properties of the generated SFRAAWG, SFRAAOWG, and SFRAAHWG operators are defined and given examples. The multi-criteria decision-making (MADM) problem is applied to the developed SFRAAWG operator. Additionally, the sensitivity of the SFRAAG operator is examined. The developed AOs are compared to a few pre-existing AOs and their significance is evaluated.
This investigation explores the scheduling of $n$ jobs on a single machine, where each job possesses a common due date, and processing time is characterized by pentagonal fuzzy numbers (PFNs). The primary objective is to minimize the aggregate of inventory holding and penalty costs, addressing the critical impact of earliness and tardiness on profitability. It is identified that earliness leads to increased inventory carrying costs and potential degradation in product quality, whereas tardiness undermines customer goodwill and inflicts reputational damage through delayed payments. Consequently, the scheduling dilemma that seeks to minimize the combined penalties of earliness and tardiness, whilst adhering to a common due date on a single machine, emerges as a pivotal and challenging endeavor in optimizing goods delivery within production settings. Recognized as a non-deterministic polynomial-time hardness (NP-hard) problem, this task underscores the complexity and competitive nature inherent in manufacturing operations. To navigate the uncertainties embedded in this problem, a fuzzy logic approach, augmented by a heuristic algorithm, is employed. Through this methodology, the problem is addressed in a manner that encapsulates the vagueness and imprecision inherent in processing time, thereby facilitating more resilient and adaptable scheduling decisions. The efficacy of this approach is demonstrated via a computational example, underscoring its potential to enhance decision-making in the realm of job scheduling.
This study delves into the intricate relationships among returns of diverse indices within the Tehran stock market, employing both Pearson and partial correlation coefficients as analytical tools. Utilizing monthly data from fourteen capital market indices, the investigation applies the k-means method for clustering based on four critical attributes: risk, efficiency, average industry index, and the number of companies within each industry. The findings reveal that when the total index is considered as a controlling variable, the partial correlation analysis yields distinct insights into the interconnections among market indices, thereby highlighting the significant influence of the total index on these relationships. Moreover, the clustering analysis categorizes the indices into three distinct groups: the first cluster exclusively comprises the total index; the second cluster includes indices from the automobile, pharmaceutical, metal, cement, chemical, and food sectors; whereas the remaining indices are allocated to the third cluster. This multifaceted approach not only elucidates the dynamic interplay between different stock market indices but also underscores the variability in their interrelations when viewed through the lens of a controlled variable. The study's methodological rigor and its innovative use of multiscale partial correlation analysis contribute to a deeper understanding of the factors shaping the Tehran stock market's behavior, offering valuable insights for investors, policymakers, and scholars alike.
The onset of the global pandemic has underscored the pivotal role of logistics, bolstered by information and communication technologies, in the resilience of supply chain networks. This study investigates the transformative impact of the COVID-19 pandemic on these networks, with a focus on the resultant operational challenges and labor shortages experienced in Poland – a critical hub in European supply chains. The research delves into how cooperative game theory can be strategically applied to address workforce deficits, particularly in sectors vital to Poland's economy, such as food and healthcare. In the context of reduced operations triggered by illness, fatalities, and preventive measures, including travel restrictions, this study elucidates the operational dynamics within supply chain networks through game theory frameworks. It scrutinizes the strategies implemented by major corporations, including Amazon, DHL, Post Office, KFC, and McDonald's, to navigate these challenges. The methodology encompasses an analysis of the network structure of supply chain game theory, tailored to the operational confines of Poland's logistics sector, acknowledging its role as Europe's breadbasket. The findings reveal various approaches to counteract labor shortages exacerbated by the pandemic, drawing parallels with similar challenges in regions like Africa, Asia, Ukraine, Turkey, and India. The study highlights the diverse impacts of workforce disruptions on commodity prices and the revenues of logistics companies within the supply network economy. These insights contribute to a broader understanding of the financial and operational implications of cooperative game theory in the context of global health emergencies. Conclusively, this research augments existing literature by demonstrating the applicability of cooperative game theory in addressing labor shortages under pandemic-induced constraints. It presents a comprehensive analysis of the strategies employed by key players in the logistics sector, offering valuable perspectives on mitigating operational disruptions in times of crisis.
In the context of the free trade port initiative, an in-depth investigation into the pricing strategies of Hainan's travel agencies was conducted, focusing on the pivotal role of customer value. This study employed empirical analytical methods, including questionnaire surveys and data analysis, to rigorously test hypotheses related to customer value-oriented pricing strategies. It was discovered that customers exhibit a predominant preference for pricing strategies anchored in their value perceptions, notwithstanding the variations in their assessments of diverse tourism products. Strategies grounded in customer value were found to be more effective in fulfilling customer requirements and augmenting satisfaction levels. The research accentuates the crucial importance of aligning pricing strategies with customer value in the context of tourism product pricing. This approach holds significant theoretical relevance and practical utility for the evolution of Hainan's tourism industry. The findings offer fresh perspectives and strategic directions for the tourism sector in Hainan, contributing to its sustainable growth and the enhancement of its competitive stature.