Javascript is required
Search
Volume 2, Issue 4, 2023
Open Access
Research article
Optimization and Performance Analysis of Microalgae Oil-Derived Biodiesel/Diesel Blends: An Emission Test Study
olusola d. ogundele ,
isiaka a. amoo ,
adeniyi o. adesina ,
afeez abidemi
|
Available online: 12-29-2023

Abstract

Full Text|PDF|XML

The deleterious environmental impacts of crude oil, notably significant pollution and escalated greenhouse gas emissions, necessitate alternative fuels. In this context, biodiesel, particularly when blended with diesel, emerges as a viable substitute. This study investigates the emissions and performance characteristics of diesel-biodiesel blends, utilizing microalgae oil-based biodiesel. Variations in the catalyst (potassium hydroxide, KOH), reaction duration (30-110 minutes), and temperature (30-70oC) were explored to determine their influence on biodiesel yield. The biodiesel produced was characterized using Fourier-transform infrared spectroscopy (FTIR), revealing distinct absorption bands indicative of various functional groups present. Furthermore, emission testing was conducted on a TecQuipment TD202 diesel engine, a naturally aspirated, single-cylinder, four-stroke, direct-injection, air-cooled model. Optimization studies revealed that the optimal biodiesel yield was achieved using 2g of KOH, at a temperature of 60oC, and within a reaction time of 90 minutes. Emission testing demonstrated a decrease in exhaust gas temperature (EGT) with reduced biodiesel blend ratios and an increase with engine speed across all blends. Carbon monoxide (CO) emissions diminished with lower biodiesel concentrations, whereas carbon dioxide (CO2) and nitrogen oxides (NOx) emissions escalated. Total hydrocarbons (THCs) emissions increased with reduced biodiesel content, and smoke opacity escalated with lower biodiesel blend ratios. This investigation methodically examines the emissions from various biodiesel blends, underscoring their potential as a cleaner, more sustainable option for the transportation sector.

Open Access
Research article
Optimization of Laminar Flow in Non-Circular Ducts: A Comprehensive CFD Analysis
mohammed hadi hameed ,
hafidh hassan mohammed ,
mohammed abdulridha abbas
|
Available online: 12-30-2023

Abstract

Full Text|PDF|XML

This study presents a detailed Computational fluid dynamics (CFD) analysis, focusing on optimizing laminar flow within non-circular ducts, specifically those with square, rectangular, and triangular configurations. The study centers on the effective use of mesh quality and size in these ducts, a factor which is previously underrepresented in those CFD studies that predominantly emphasized turbulent rather than laminar flows. With the help of finite element approach, this study compares the performance of these non-circular ducts, employing Reynolds numbers ranging from 1600 to 2000 and mesh sizes of 6, 12, and 18 mm. A ribbed duct style, arranged in a hybrid manner, is adopted to further this study. Analysis in this paper applied the Single predictive optimization (SPO) technique to the identification of the K-$\varepsilon$-Standard as the preferred viscosity model and a hybrid rib distribution as optimal within the triangular duct configuration. Parameters of a Reynolds number of 1600 and a mesh size of 18 mm emerged as the most effective values for this duct style. Then, the attained results of the Analysis of variance (ANOVA) indicated the F-Criterion's insignificance for Reynolds laminar levels, rendering the laminar viscosity model less relevant within the test section. Additionally, the implementation of the Six sigma procedure (SSP) markedly enhanced both the performance factor (PF) and turbulence intensity, which were observed at 4.90% and 146.77%, respectively. This improvement was most notable in the triangular duct, characterized by rib heights of 66 mm (semi-circle), 66 mm (rectangular), and 38.126 mm (triangular).

Abstract

Full Text|PDF|XML
In the realm of enterprise technology, Internet of Things (IoT)-based wireless devices have witnessed significant advancements, enabling seamless interactions among machines, sensors, and physical objects. A critical component of IoT, Wireless Sensor Networks (WSN), have proliferated across various real-time applications, influencing daily life in both critical and non-critical domains. These WSN nodes, typically small and battery-operated, necessitate efficient energy management. This study focuses on the integration of crow search optimization and firefly algorithms to optimize energy efficiency in IoT-WSN systems. It has been observed that the energy reserve (RE) of a node and its communication costs with the base station are pivotal in determining its likelihood of becoming a Cluster Head (CH). Consequently, energy-saving data aggregation techniques are paramount to prolonging network longevity. To this end, a hybrid approach combining crow search and firefly optimization has been proposed. The crow search algorithm plays a significant role in enhancing data transfer efficiency, while the firefly algorithm is instrumental in selecting optimal cluster heads. This integrated methodology not only promises to extend the network's lifespan but also ensures a balance between energy conservation and data transmission efficacy.

Abstract

Full Text|PDF|XML

In this investigation, the enhancement of heat transfer in pipes facilitated by Fe3O4-distilled water nanofluid under the influence of magnetic fields is comprehensively studied. The research primarily focuses on examining the alterations in the thermal boundary layer and fluid flow patterns caused by the application of magnetic fields. It is observed that magnetic fields induce the formation of vortexes, thereby actively influencing the flow patterns within the fluid. These vortexes play a pivotal role in promoting thermal diffusion, resulting in an improved heat transfer rate. The core aim of this study is to quantitatively assess the impact of magnetic nanofluids on the coefficient of heat transfer. A model tube, possessing an inner diameter of 25.4 mm and a length of 210 mm, serves as the basis for the simulations. The investigation encompasses a range of inlet velocities (0.05, 0.1, and 0.5 m/s) and exit pressures to analyze the magnetic field's effect on heat transfer and fluid dynamics. Magnetic flux intensities of one, two, and three Tesla are employed. Notably, the highest temperature of 349 K is recorded in the presence of three magnets, indicating an escalation in temperature with an increase in magnetic strength. However, a diminishing temperature rise is noted over a specified distance with additional magnets. For instance, at a distance of 100 mm, the temperature peaks at 340 K with one magnet, whereas with two magnets, this temperature is attained at a mere 50 mm, suggesting enhanced magnetizer efficiency. Furthermore, the introduction of a magnetic field at the tube's center reveals that high flow velocities tend to counteract the magnetic influence due to their superior force, which impedes the incorporation of metal particles into the fluid. As the magnetic flux value escalates, the nanofluid's magnetic particles either congregate or disperse, thereby obstructing flow and intensifying channel vortices. This phenomenon results in heightened turbulence, instigated by the magnets, which in turn precipitates a rapid increase in fluid flow velocity, thereby impeding the fluid's capacity to adequately absorb heat for efficient heating.

Abstract

Full Text|PDF|XML

The quest for superior wear-resistant coatings has led to significant advancements in laser cladding technology, yet the escalating requirements for durability under operational conditions challenge the efficacy of existing solutions. This investigation delves into the enhancement of wear resistance in coatings through the integration of particle reinforcement phases, identified as a cost-effective strategy for augmenting coating performance. Emphasis is placed on the systematic classification of particle reinforcements and the methodologies employed for their incorporation. The focus is particularly cast on the incorporation of hard and self-lubricating particles into laser-clad wear-resistant coatings, highlighting innovations in particle addition techniques. An examination of the mechanisms through which hard particlescomprising oxides, carbides, nitrides, borides, and their multifaceted compoundsreinforce coatings is presented, delineating the influence of particle content, size, and morphology on wear resistance. Additionally, the paper explores the state of research on the self-lubricating properties imparted by sulfides, fluorides, graphite, and MAX phase particles under varied thermal conditions. A critical analysis of the benefits and limitations associated with the use of hard and self-lubricating particles in the enhancement of coating durability is conducted. This comprehensive review serves not only to elucidate the current landscape of particle-reinforced, laser-clad coatings but also to inform future research directions aimed at developing coatings capable of withstanding high temperatures and exhibiting exceptional hardness. The commitment to leveraging in situ synthesis for the development of these advanced materials underscores the potential for significant breakthroughs in the field of wear-resistant coatings.

- no more data -