Javascript is required
Search
Volume 2, Issue 3, 2023

Abstract

Full Text|PDF|XML

In the Middle East, gas-fired heaters are conventionally favored due to their reliability, cost-effectiveness, and minimal environmental impact. However, the challenges associated with traditional designs, such as low thermal efficiency, high fuel consumption, emissions of environmental pollutants, indoor gas leakage, moisture absorption, uneven heat distribution, and non-compliance with design standards, necessitate innovative solutions. A novel gas-fired heater design is thus presented in this investigation, incorporating a double-walled chimney equipped with an intermediate ejector, blades, and a mesh plate. These components were integrated to enhance the overall performance by optimizing airflow dynamics, thereby improving efficiency and ensuring uniform flame formation. An experimental heater model was constructed, and a series of controlled experiments, along with Computational fluid dynamics (CFD) modeling, were performed. The thermal efficiency was found to improve by an average of 10% compared to conventional models, elevating the efficiency from 75% to 85%. This increase was attributed to the preheating of the inlet air in the double chimney, proper air distribution within the combustion chamber through mesh plate application, and the reduction of excess air volume by controlling the air inlet. Enhanced safety was also observed in the proposed design, with no exchange of air with the room, thereby alleviating concerns related to indoor gas leakage and moisture absorption. A minor trade-off was noted with a 3 ppm increase in nitrogen oxides ((NOx) emissions, an effect of reduced excess airflow to the combustion chamber; however, this was deemed acceptable in light of the substantial efficiency increase. Furthermore, the decreased natural gas consumption rendered the model economically attractive. Overall, the proposed gas-fired heater design offers significant potential for improving residential heating systems, addressing environmental issues, and maximizing energy savings, and is aligned with the global pursuit of energy-efficient and sustainable solutions.

Abstract

Full Text|PDF|XML

High-rise edifices are emblematic of contemporary construction, encapsulating advancements in environmental, formal, and structural design approaches. Such structures, often considered to consume substantial amounts of energy, primarily due to air conditioning and lighting, epitomise urban progression in developed regions. Concerns over energy and resource consumption have necessitated the exploration of viable alternatives for mitigating energy usage. In response, architectural endeavours have gravitated towards harnessing modern technologies to curtail energy demands, especially in high-rise constructions. Several architectural trends have subsequently emerged, each leveraging a myriad of techniques with the intent to diminish energy usage. This research, therefore, sought to elucidate the technologies deployed in energy conservation for high-rise buildings and subsequently discern their ramifications on architectural formulation. Adopting a qualitative-descriptive approach, an analytical examination was conducted on fifteen distinct cases of energy-efficient structures, aiming to gauge the influence of such technologies. Data, procured from visual and descriptive evaluations, were systematised using an observation sheet. It has been observed that certain environmentally-focused design methodologies may inadvertently compromise the architectural aesthetics of high-rise structures. Consequently, there emerges a pressing need for architects to harmonise aesthetic aspirations with contemporary energy-saving imperatives, ensuring judicious use of natural resources.

Open Access
Research article
Techno-Economic Evaluation of Hybrid Photovoltaic-Wind Energy Systems for Indonesian Government Buildings
singgih dwi prasetyo ,
farrel julio regannanta ,
anom respati birawa ,
muhammad salman alfaridzi
|
Available online: 09-29-2023

Abstract

Full Text|PDF|XML
The burgeoning population in Indonesia necessitates an escalation in energy provision. The reliance on diminishing fossil fuels, coupled with their adverse environmental repercussions, propels the exploration of renewable alternatives. This study investigates the techno-economic viability of implementing hybrid photovoltaic (PV) and wind turbine systems across government edifices within five urban locales: Semarang, Surabaya, Yogyakarta, Jakarta, and Denpasar. Employing the Hybrid Optimization Model for Electric Renewables (HOMER), simulations and optimizations of the hybrid systems were conducted, aiming to fulfil an electrical demand of 2636.1 kWh. The analysis is predicated on a 25-year operational lifespan. Results indicate that Denpasar presents the optimum potential for the hybrid system, with an annual electricity generation of 1,360,195 kWh surpassing the consumption demand of 1,214,136 kWh. The Net Present Cost (NPC) is calculated at IDR 27,529,340,000.00 and the Cost of Energy (COE) at IDR 997.17, yielding an attractive investment prospect with a Break Even Point (BEP) at 8.2 years. The estimated initial outlay for the Denpasar government building's PV system stands at IDR 4,149,376,743.96. The findings underscore the financial and technical feasibility of harnessing solar and wind synergies for sustainable energy solutions in Indonesian government infrastructure. These outcomes have pivotal implications for policy-making and strategic energy planning, demonstrating a replicable model for renewable integration in similar tropical regions.
Open Access
Research article
Investigating the Impact of Ignition Timing Variations on Single-Cylinder Otto Engine Performance with E50 Fuel Blend
rendy adhi rachmanto ,
rizqi husain alfathan ,
wibawa endra juwana ,
zainal arifin ,
eko prasetya budiana ,
singgih dwi prasetyo
|
Available online: 09-29-2023

Abstract

Full Text|PDF|XML

The exponential growth in motorized vehicle usage presents myriad challenges, encompassing environmental pollution and sustained energy shortages. To address these challenges, the exploration of sustainable energy alternatives is imperative, with ethanol-based fuels emerging as a viable option. This investigation delves into the performance of a single-cylinder Otto engine, with a focus on the effects of ignition timing variations using a 50% ethanol and 50% pertalite blend, denoted as E50. The ignition timing was systematically varied to standard, +2°, +4°, and -2°. The results demonstrated that the +4° ignition timing, in conjunction with E50, delivered superior performance, culminating in a maximum torque of 8.02 Nm at 4000 rpm and a peak power output of 4.15 kW at 8000 rpm. Concurrently, optimal engine efficiency was achieved, with the Brake Specific Fuel Consumption (BSFC) reaching its lowest value of 0.307 Kg/kW.h at 5000 rpm and Brake Thermal Efficiency (BTE) peaking at 36.10% at the same rotational speed. When contrasted with alternative fuels, the E50 blend resulted in an average torque reduction of 13.27% and a 14.46% decrease in power output. Despite this, significant enhancements in engine efficiency were observed. A 25.05% improvement in BSFC was noted, albeit with a reduction in fuel efficiency, while BTE experienced a 5.02% increase, indicative of augmented engine efficiency, particularly at the +4° ignition timing. This study underscores the potential of E50 and altered ignition timing in reducing reliance on fossil fuels, thus contributing to the transition towards sustainable energy solutions in the automotive sector.

Abstract

Full Text|PDF|XML

Over recent years, nanotechnology’s landscape has witnessed transformative advancements, heralding new research opportunities in scientific and engineering domains. A notable innovation in this evolution is the development of nanofluids, comprising nanoparticles (each under 100 nm in diameter) suspended in conventional heat transfer fluids such as ethylene glycol and water. Distinguished from traditional heat transfer fluids, nanofluids are posited to offer substantial enhancements, particularly in thermal characteristics. The dispersion of nanoparticles, even in minimal quantities, within base fluids markedly improves the thermal properties of these fluids. This study focuses on evaluating the thermal performance of a shell and tube heat exchanger utilizing the shear stress transport (SST) turbulence model. ANSYS CFX, acclaimed for its accuracy, robustness, and expedience in various turbulence models, is employed for this analysis. The SST model is particularly effective in non-equilibrium turbulent boundary layer flows, enabling accurate heat transfer predictions. ANSYS CFX’s approach to near-wall equations mitigates the stringent grid resolution requirements often encountered in computational fluid dynamics (CFD) applications. The investigation encompasses the use of water and TiO2/water nanofluid at varying concentrations (1%, 2%, 3%, 4%, 5%) in a 3D model and CFD simulation. Enhanced efficiency and cooling performance are observed with the introduction of nanofluids in the shell and tube heat exchanger.

- no more data -