Javascript is required
Search
Volume 5, Issue 1, 2026

Abstract

Full Text|PDF|XML
The rapid development of e-commerce has made last-mile delivery a critical bottleneck in logistics management, with its efficiency directly impacting operational costs, service quality, and environmental sustainability. To address the multi-criteria decision-making (MCDM) problem of parcel locker location selection, this study constructs an intelligent decision-support framework that integrates the Improved Fuzzy Step-wise Weight Assessment Ratio Analysis (IMF SWARA) and the Weighted Aggregated Sum Product Assessment (WASPAS) methods. Based on real-world data from the Brčko Distribution Center of a regional logistics company (X Express), the research first employs the IMF SWARA method to determine fuzzy weights for six key criteria, including availability, frequency of user requests, and accessibility. The WASPAS method is then applied to comprehensively rank twelve candidate locations. Results indicate that location A2 is the optimal choice, followed by A4 and A3. The robustness of the model is verified through sensitivity analysis, including comparisons with other MCDM methods such as ARAS, EDAS, and MARCOS, as well as systematic variation tests of the $\lambda$ parameter in WASPAS. This framework provides logistics managers with a structured and quantifiable decision-making tool, facilitating data-driven optimization of last-mile delivery networks in complex urban environments and enhancing the sustainability and operational efficiency of logistics systems.

Abstract

Full Text|PDF|XML

This work provides a complete methodology for adopting well-established AI methods (predictive analytics, LLM agents, forecasting) into Microsoft Dynamics 365 Customer Relationship Management (CRM) for agricultural lending. While not claiming that the algorithms are novel, this work contributes a pragmatic approach to implementing these algorithms that specifically address the regulatory, seasonal, and operational characteristics of agricultural finance, as regulated by the Farm Credit System. It focuses on the real-life constraints and constraints within the regulated financial services industry, and measurable impacts that occurred. The paper provides a domain-oriented application of specific existing AI-CRM integration, with credible statistical testing including an external validation on USDA datasets and benchmarking across peer Farm Credit institutions, as well as cross-institutional analysis. By taking a reasonably conservative duration of 18 months, the Farm Credit institutions noted a statistically significant impact (operational efficiencies of the lending institution to assess member interests) where average case resolution time reduced by 28% (67.2h to 48.4h), and lead conversions improved by 35% (25.9% to 35.0%). Each methodology of implementation also included a series of validations in compliance with regulatory oversight in financial institutions that started to build data governance, model performance compliance through a proactive risk definition, and compliance standards suitable for their institution, and within regulatory standards by regulations. Beyond statistical significance (paired tests, $p <0.001$), practical impact was quantified using absolute and relative changes and bootstrap confidence intervals. The article provides the agricultural lending industry an applied methodology to adopt AI for stakeholder innovation while ensuring they are adept in their enterprise risk management requirement, and still target measurable business outcomes. Given a conservative potential implementation timetable (i.e., 18 months) and validation methodology protocols developed to ensure complete data and model validation, this approach is scalable for agricultural lending implementation and would be a useful instrument across all 72 Farm Credit System institutions.

Abstract

Full Text|PDF|XML
The digital transformation of commercial banks (DTCB) has altered the way financial institutions collect, process, and use information, with potential implications for firms’ investment behaviour. This study examines whether and how DTCB affects corporate investment efficiency using panel data on Chinese listed companies from 2013 to 2023. The results indicate that a higher level of DTCB is associated with a statistically significant improvement in corporate investment efficiency. Further analysis suggests that this effect operates primarily through two channels: a reduction in financing constraints and a decline in agency costs. The heterogeneity analysis shows that the positive effect of DTCB on investment efficiency is concentrated among privately owned firms, while no significant effect is observed for state-owned enterprises (SOEs). These findings provide evidence that the DTCB reshapes firms’ financing and governance environments in ways that influence investment outcomes. The study contributes to the literature on digital finance and corporate investment by offering firm-level empirical evidence on the economic consequences of banking digitalisation.

Abstract

Full Text|PDF|XML
Digital finance has increasingly influenced the functioning and stability of industrial systems by reshaping interregional economic linkages. Based on panel data from 31 Chinese provinces spanning the period 2012–2021, this study investigates how the development of digital finance is associated with the spatial structure of industrial chain resilience. A modified gravity model is used to construct interprovincial interaction networks, and social network analysis is applied to examine their structural characteristics and temporal evolution. The empirical results show that the spatial network related to digital finance and industrial chain resilience has become progressively more connected over time, as reflected by a gradual increase in network density. However, substantial regional heterogeneity persists in network position and influence. Provinces with relatively advanced digital finance tend to occupy more central positions and exert stronger structural influence, whereas peripheral provinces remain weakly connected and play limited roles within the network. This asymmetric network configuration constrains the overall stability of the industrial chain system and highlights the importance of coordinated development in digital finance for improving systemic resilience.
- no more data -