Javascript is required
Search
Volume 4, Issue 4, 2025
Open Access
Research article
Application of the Analytic Hierarchy Process for Optimizing the Selection of Electric Vehicles in Urban Courier Services
Sreten Simović ,
jelena šaković-jovanović ,
tijana ivanišević ,
aleksandar trifunović
|
Available online: 09-18-2025

Abstract

Full Text|PDF|XML
The accelerating growth of urban populations, rapid city expansion, and inadequacies in transportation infrastructure have exacerbated traffic congestion and environmental burdens in metropolitan areas. These challenges have intensified the demand for sustainable mobility strategies, with electric vehicles emerging as a central component of urban decarbonization and efficiency initiatives. In this study, a structured multi-criteria decision-making framework was established to determine the most suitable electric vehicle for courier services. The framework was developed using the analytic hierarchy process (AHP), which enables the systematic evaluation of both criteria and sub-criteria and provides a robust mechanism for prioritizing alternatives. To enhance reliability, the model was implemented and validated using Expert Choice software, allowing for consistency testing and sensitivity analysis. Three categories of electric vehicles—electric cars, electric scooters, and electric bicycles—were assessed against a comprehensive set of decision factors encompassing economic, operational, environmental, and infrastructural dimensions. The resulting preference weights indicated that electric cars (0.387) represent the most suitable option for courier services under the evaluated conditions, followed closely by electric scooters (0.316) and electric bicycles (0.297). The ranking highlights the relative advantages of electric cars in balancing load capacity, operational flexibility, and environmental impact, while also reflecting the growing feasibility of scooters and bicycles for last-mile delivery. By offering a transparent and replicable approach to alternative vehicle selection, this research contributes to the optimization of courier logistics and the promotion of environmentally responsible transportation systems in congested urban environments. The methodological framework developed in this study may be adapted for broader applications in sustainable transport planning and fleet management, supporting policy-makers and practitioners in achieving urban sustainability objectives.

Abstract

Full Text|PDF|XML

The optimization of project schedules in the presence of uncertainty remains a critical challenge in project management. This study proposes a hybrid methodology that combines Monte Carlo Simulation (MCS) with Integer Linear Programming (ILP) to optimize project crashing strategies under conditions of schedule risk. The approach was applied to a real-world telecommunications infrastructure project, which involved the construction of 50 towers within a stringent contractual deadline. MCS was employed to model the uncertainty in activity durations and assess the likelihood of on-time project completion, while ILP was used to determine the most cost-effective crashing strategy. The findings indicate that, without any mitigation measures, the probability of completing the project within the planned 68-day schedule was a mere 3%. However, upon implementing risk response measures, this probability increased to 21%. A comparative analysis demonstrated that delay penalties increase at a much higher rate than crashing costs, highlighting the significant financial benefits of early intervention. This study illustrates that the integration of probabilistic risk analysis with optimization techniques not only enhances schedule reliability but also minimizes cost overruns, providing a robust decision-making framework for complex projects. By leveraging the combination of MCS and ILP, the proposed methodology supports the development of more resilient and economically efficient project plans, particularly in projects characterized by high uncertainty and time-sensitive constraints.

Open Access
Research article
Use of the IMF SWARA Method in Personnel Selection and its Solution
nuri karaca ,
alptekin ulutaş ,
ali oğuz bayrakçıl ,
dillip kumar das ,
sarfaraz hashemkhani zolfani ,
cipriana sava
|
Available online: 11-11-2025

Abstract

Full Text|PDF|XML
It could be argued that the competitive resources possessed by organisations today are similar. One of the most important factors that differentiates businesses, provides a competitive advantage, and enables them to stay one step ahead of their competitors is human capital. Organisations' ability to act in line with their mission, vision, and goals depends on the effective and efficient management of this capital. Selecting the right personnel is one of the most important stages in managing human resources effectively and efficiently. If the selected personnel do not perform as expected, it can indeed harm the organisation. The purpose of this study is therefore to identify the selection criteria prioritised by human resources managers in a call centre, a hospital, a bank, a public economic enterprise, and two companies operating in an organized industrial zone in personnel selection. The criteria prioritised in personnel selection were first collected during initial interviews with relevant managers to create a pool of criteria. Ten of these criteria were then presented to the managers in a second interview, and they were asked to rank them in order of importance. Data obtained from each manager was analysed using the IMF-SWARA method. According to the results, the most important criterion for managers was “Position and competency alignment (PCA)”, while the least important criterion was “solving problems promptly and effectively (SPP)”. These findings demonstrate that managers prioritise compatibility between the qualities of the job and those of the personnel. It is believed that these results can guide managers in organisations operating in the relevant sector, as well as individuals considering working in this sector.
Open Access
Research article
Application of the FUCOM and MARCOS Methods for Selecting Logistics Service Providers
marko blagojević ,
dimitrije blagojević ,
algimantas danilevičius ,
evelin krmac ,
salvatore antonio biancardo
|
Available online: 11-28-2025

Abstract

Full Text|PDF|XML

Selecting an optimal logistics service provider is a complex multi-criteria decision-making problem that directly affects a company’s competitiveness. This paper proposes a hybrid MCDM model that integrates the Full Consistency Method (FUCOM) and Measurement Alternatives and Ranking according to Compromise Solution (MARCOS) methods. FUCOM was used to determine the weight coefficients of seven criteria, while MARCOS was applied to rank ten potential logistics providers in the market of Bosnia and Herzegovina. The case study was conducted for the company Hygiene Pro Team from Banja Luka. The results showed that provider P9 represents the most favorable solution, which was confirmed by an extensive sensitivity analysis that verified the stability of the model. The proposed FUCOM–MARCOS model provides a robust framework for strategic decision-making in logistics.

Abstract

Full Text|PDF|XML

Assessing the performance of decision-making units (DMUs) under intuitionistic fuzzy conditions has emerged as an essential area of investigation in today’s performance evaluation studies. The framework demonstrated in Intuitionistic Fuzzy Data Envelopment Analysis (IFDEA) is a way to assess the relative performance of DMUs when the observed data are notably expressed as ambiguity or uncertainty in the inputs and outputs represented by intuitionistic fuzzy numbers (IFN). When the situations define the conditions to use models with traditional input-output distinctions, traditional models are not less applicable when the parameters are vague, thus prompting the need for a set of more flexible tools. In this work, a ranking procedure is utilized that uses the centroid of triangular intuitionistic fuzzy numbers (TIFNs) to address the IFDEA model that defined input and output variable through TIFNs, it allows to calculate the efficiency status of each unit and to differentiate the DMUs between efficient and inefficient groups. An intuitionistic super-efficiency (IFSE) model is provided to obtain a complete ranking of DMUs that identified as efficient. To help decision makers, a reference-set-oriented benchmarking strategy is created to identify relevant peer units of the DMUs identified as inefficient to assist in improving their performance. To demonstrate the strength and practical applicability of the proposed framework, two examples of application are presented, as well as discussed, the technical differences of comparing the outcomes of analysis with the ranking proposals existing in the literature.

- no more data -