Industrial symbiosis (IS) represents a strategic framework for collaboration among companies through innovative partnerships, which aimed at optimizing resource utilization, reducing environmental impact, and promoting sustainable development in line with the principles of circular economy. This study conducted a systematic literature review (SLR) and a quantitative analysis of the effectiveness of IS tools in resource management. Publications from January 2020 to December 2024 were retrieved from the established databases such as SpringerLink, ScienceDirect, EBSCO, and DOAJ, with a focus on industrial engineering, environmental management, circular economy, sustainable development, resource conservation, and recycling. Advanced methodologies including the Fuzzy Analytic Hierarchy Process (FAHP) and the Decision-Making Trial and Evaluation Laboratory (DEMATEL) were applied to evaluate four key dimensions, i.e., Decision-Making (DMD), Geographical Location (GLD), Strategic Planning (SD), and Lean Manufacturing (LMD), along with 21 subcriteria. The results indicated that DMD and GLD functioned as causal dimensions influencing SD and LMD, while alternatives such as Intelligent Waste Recycling Systems (IWRS) and Life Cycle Assessment (LCA) were considered to be highly efficient in resource utilization. The identification of dominant relationships via the threshold value of α = 0.58 highlighted strategic leverage points for implementing sustainable manufacturing practices. These findings emphasize that effective DMD, combined with strategic planning based on geographical considerations and application of technological tools, is critical for optimizing resources, enhancing environmental protection, and fostering economic and social development, thus providing clear guidance for the implementation of IS strategies in industrial settings.