Javascript is required
Search
/
/
Power Engineering and Engineering Thermophysics
OF
Power Engineering and Engineering Thermophysics (PEET)
PMDF
ISSN (print): 2957-9627
ISSN (online): 2957-9635
Submit to PEET
Review for PEET
Propose a Special Issue
Current State
Issue
Volume
2025: Vol. 4
Archive
Home

Power Engineering and Engineering Thermophysics (PEET) is a distinct journal dedicated to the advanced areas of power engineering and engineering thermophysics. It uniquely bridges the gap between theoretical research and practical applications in these fields, with a focus on energy conversion, thermal system optimization, and sustainable energy technologies. PEET is an invaluable resource for professionals and researchers, providing in-depth insights into the latest developments and innovations in power engineering solutions and thermophysical principles. The journal's specialized coverage offers a blend of topics ranging from renewable energy technologies to the efficiency of thermal systems, setting it apart from other engineering publications. Published quarterly by Acadlore, the journal typically releases its four issues in March, June, September, and December each year.

  • Professional Service - Every article submitted undergoes an intensive yet swift peer review and editing process, adhering to the highest publication standards.

  • Prompt Publication - Thanks to our expertise in orchestrating the peer-review, editing, and production processes, all accepted articles are published rapidly.

  • Open Access - Every published article is instantly accessible to a global readership, allowing for uninhibited sharing across various platforms at any time.

Editor(s)-in-chief(2)
oronzio manca
Department of Engineering, University of Campania "Luigi Vanvitelli", Italy
oronzio.manca@unicampania.it | website
Research interests: Heat Transfer; Thermal Sciences and Applied Thermodynamics
luca piancastelli
Department of Industrial Engineering, University of Bologna, Italy
luca.piancastelli@unibo.it | website
Research interests: Both Land and Air Vehicles; Energy Generation Systems from Renewable Sources; Advanced Vehicle Interfaces; Autonomous Driving System; Restoration of Monuments Using Additive Technologies, etc

Aims & Scope

Aims

Power Engineering and Engineering Thermophysics (PEET) is a dynamic, international open-access journal dedicated to disseminating cutting-edge research in power engineering and engineering thermophysics, including related areas. PEET's mission is to promote a multidisciplinary approach to research in engineering thermophysics, thermal engineering, power machinery, fluid machinery, and chemical process machinery, emphasizing the latest advances in these rapidly evolving fields. The journal invites diverse submissions, from in-depth reviews and research papers to concise communications and Special Issues on specific topics. PEET encourages contributions that not only delve into fundamental studies but also explore the application of these principles in related disciplines.

PEET aims to foster a detailed and expansive dialogue in scientific research, with no restrictions on paper length, allowing for full and reproducible documentation of results. Distinctive features of PEET include:

  • Every publication benefits from prominent indexing, ensuring widespread recognition.

  • A distinguished editorial team upholds unparalleled quality and broad appeal.

  • Seamless online discoverability of each article maximizes its global reach.

  • An author-centric and transparent publication process enhances submission experience.

Scope

The scope of PEET is comprehensive and detailed, addressing a wide array of specialized topics within the field:

  • Co-generation Systems: In-depth exploration of systems that simultaneously generate electricity and useful heat, focusing on efficiency, design, and technological advancements.

  • Building Energy Efficiency: Detailed studies on methods and technologies to reduce energy consumption in buildings, including passive and active strategies, energy management systems, and sustainable building materials.

  • Chemical Process Machinery: Analysis of the machinery used in chemical processes, focusing on design improvements, efficiency enhancements, and safety considerations.

  • Biomass Gasification Power Generation: Examination of biomass as a sustainable source for power generation, including process optimization, gasification technologies, and environmental impact assessments.

  • Heat Transfer in Cryogenic Systems: Studies on the heat transfer mechanisms in systems operating at extremely low temperatures, with applications in space technology, superconductivity, and liquefied natural gas.

  • Combustion Thermophysics of Coal: Research on the combustion properties of coal, including flame dynamics, emission control, and efficiency optimization.

  • Energy Utilization in Refrigeration and Air Conditioning: Investigations into the efficiency and environmental impact of refrigeration and air conditioning systems, including alternative refrigerants and advanced cooling technologies.

  • Photocatalytic Hydrogen Production: Exploration of hydrogen production methods using photocatalysis, focusing on catalyst development, reaction mechanisms, and system design.

  • Nano/Microsystem Temperature Delivery: Study of temperature control and management in nano and microsystems, relevant in semiconductor manufacturing, microfluidics, and nanotechnology.

  • Thermal Engineering: Broad research into thermal processes in engineering, including heat exchangers, thermal insulation, and system design for industrial applications.

  • Thermodynamic Cycle Theory and System Simulation: Advanced theoretical analysis and computer simulations of thermodynamic cycles, with applications in power plants, refrigeration cycles, and heat pumps.

  • Thermofluid Mechanics and Turbomachinery: Investigations into the fluid mechanics and dynamics in turbomachinery, including turbines, compressors, and pumps, focusing on performance optimization and design innovations.

  • Power Machinery and Engineering: Research on machinery used in power generation, transmission, and distribution, with a focus on technological advancements, reliability, and sustainable practices.

  • Fluid Machinery and Engineering: Studies on the design, operation, and optimization of fluid machinery, including hydraulic systems, fluid dynamics, and flow control technologies.

  • Engineering Thermophysics: Exploration of the physical principles in engineering processes, focusing on energy transfer, thermodynamic properties, and material behaviors at various temperatures.

  • Solar Energy Utilization: Innovative research on capturing and utilizing solar energy, including photovoltaic systems, solar thermal technologies, and solar power plant efficiency.

  • Oil Alternatives: Investigation of alternative energy sources to oil, including biofuels, hydrogen energy, and synthetic fuels, focusing on sustainability and environmental impact.

  • Fuel Cells: Advanced research in the development and application of fuel cell technologies, including materials, design, and system integration for various applications.

  • New Energy Vehicles: Exploration of electric, hybrid, and alternative fuel vehicles, focusing on energy systems, battery technologies, and infrastructure development.

  • Electric Vehicle Multi-Energy Power Control Systems: Study of control systems in electric vehicles for managing multiple energy sources, focusing on efficiency, integration, and smart grid compatibility.

  • Internal Combustion Engine Combustion and Emission Control: Innovations in internal combustion engines, addressing combustion efficiency, emission reduction technologies, and alternative fuels.

  • Automotive Powertrain and Control: Research on automotive powertrain systems, including advancements in transmission systems, drivetrain technologies, and vehicle dynamics control.

Articles
Recent Articles
Most Downloaded
Most Cited

Abstract

Full Text|PDF|XML
Greenhouses are energy-intensive agricultural systems, where the sustainable design of natural ventilation could markedly reduce energy demand while maintaining optimal conditions for plant growth. The performance of natural ventilation arises from a multifaceted interaction among several determinants, including the geometric configuration of the greenhouse, prevailing environmental conditions, and the structural characteristics of ventilation openings and ducts. This study employed computational fluid dynamics (CFD) to assess the influence of roof inlet design on airflow distribution, regulation of canopy temperature, and energy performance in a single-span greenhouse measuring 20 × 10 × 6 meters. Six ventilation configurations were evaluated by varying the quantity and shape of roof inlets: three large inlets and ten smaller inlets, each with rectangular, oval, or circular geometries. The plant canopy was modeled as a porous medium to realistically capture aerodynamic resistance. Mesh independence was validated using outlet mass flux, and simulations were conducted under steady-state natural ventilation conditions. Key performance indicators included airflow velocity, temperature distribution, ventilation rate, wall shear stress (WSS), air changes per hour (ACH), and estimated annual energy saving. Results of the analysis revealed that circular and oval inlets enhanced air mixing and reduced thermal gradients within the canopy, whereas rectangular inlets generated localized recirculation zones and elevated WSS, resulting in lower energy efficiency. The inlet geometry and quantity played a critical role in the sustainable design of greenhouse ventilation. By integrating CFD-based airflow analysis with energy-saving assessments, this study offered a practical framework to guide greenhouse operators in optimizing ventilation strategies that balance productivity, thermal comfort, and long-term energy sustainability.

Abstract

Full Text|PDF|XML

The combustion behavior of blended petroleum–biofuel mixtures has increasingly been investigated as interest grows in low-toxicity, biodegradable, and energy-dense biomass-derived fuels. Among higher alkanols, n-butanol is recognized for its favorable physicochemical properties and its compatibility with gasoline-range hydrocarbons (HC) such as iso-octane. In this context, a systematic evaluation of laminar flame propagation and instability characteristics is essential for understanding the combustion performance and operational safety of blended fuels. In the present study, the laminar burning velocity (LBV) and cellular instability of premixed iso-octane/n-butanol/air flames were quantified for a wide range of equivalence ratios (0.7–1.5) at an initial temperature of 423 K and ambient pressure. It was observed that the LBV increased consistently with the addition of n-butanol, whereas the Markstein length (Lb) decreased. Analysis of cellular structures revealed that diffusive-thermal instability strengthened monotonically as the equivalence ratio increased, resulting in more unstable flame propagation under fuel-rich conditions. In contrast, the hydrodynamic instability exhibited a non-monotonic trend, first intensifying and subsequently diminishing with increasing equivalence ratio. The critical Peclet number decreased continuously across the equivalence-ratio range, while the critical flame radius varied non-monotonically. The incorporation of n-butanol was found to enhance both diffusive-thermal and hydrodynamic instabilities and to reduce the critical Peclet number and critical flame radius. These findings underscore the need for careful control of combustion stability in practical applications involving iso-octane/n-butanol mixtures and provide fundamental insight into the flame-structure evolution associated with next-generation alternative fuels.

Abstract

Full Text|PDF|XML
This study investigates the design and performance of altitude test benches for piston engines with power outputs up to 200 kW. The primary objective is to generate controlled depressions within an enclosed engine bay to reproduce atmospheric conditions corresponding to altitudes ranging from sea level to 14,000 m. Three configurations are examined: an ejector–diffuser system derived from National Advisory Committee for Aeronautics (NACA) principles, a Venturi device powered by an auxiliary diesel engine (Cursor 13), and a centrifugal turbocharger (Holset HY55V) mechanically coupled to the same auxiliary engine. Computational Fluid Dynamics (CFD) simulations are performed to evaluate the pressure and velocity distributions within the test chamber and its associated flow components. The ejector-diffuser arrangement achieves a moderate pressure reduction but exhibits flow separation in the diffuser at large expansion angles, limiting its efficiency. The Venturi system achieves a greater vacuum level, reducing the chamber pressure to approximately 76 kPa, equivalent to an altitude of around 2,500 m. The turbocharger-based configuration demonstrates the highest performance, achieving a chamber pressure of approximately 15 kPa—equivalent to an altitude of 14,000 m—through appropriate adjustment of compressor rotational speed and intake valve opening. This configuration also ensures a faster transient response and enhanced stability of airflow and pressure distribution. The results highlight the importance of proper integration between auxiliary propulsion systems, component sizing, and boundary condition definition to achieve accurate altitude simulation. The proposed approach demonstrates that combining a variable-speed compressor with active flow control enables flexible reproduction of both steady-state and transient operating conditions. The findings provide practical guidelines for developing cost-effective, reliable, and versatile altitude test benches suitable for experimental evaluation and calibration of high-power piston engines under simulated high-altitude environments.
Open Access
Research article
Calculation and Optimization of Biomass Energy Production by the Dignet Energy Platform
srđan vasković ,
petar gvero ,
nermin montel ,
ivan marijanović
|
Available online: 05-19-2025

Abstract

Full Text|PDF|XML
This paper discussed the possibilities of using the developed Dignet Energy Platform (DEP) for modeling and optimization of bioenergy production. The DEP presents a set of software tools based on a mathematical model to calculate the desired output and the profitability of investments in a renewable energy source based on input parameters. By using Multi-Criteria Decision Analysis (MCDA), the DEP selects an optimal variant of energy or fuel production from biomass. This tool enables the simplification of complex and biomass energy production-related calculations while facilitating the customization of each individual element in the bioenergy production process. The user could use a simple procedure to “simulate” the production parameters and choose the best option from a set of biomass-based projects. Criteria describing the various projects were selected by the users and calculated by the DEP. These criteria helped select the appropriate optimal project by multi-criteria optimization. In this paper, several chains of biomass fuel/heat/electricity production applicable to the settings in the Republic of Croatia and the region were analyzed. Results in this research provided selection of optimal chains for the production of solid fuels and energy, including heat and combined heat and power (CHP) from different categories of biomass. The DEP is proved to be a practical and effective tool in selecting the optimal project of biomass energy production.

Abstract

Full Text|PDF|XML
Heating, ventilation, and air-conditioning (HVAC) systems have been identified as major contributors to global energy consumption, underscoring the urgency of optimizing their performance for economic and environmental sustainability. This review presents a comprehensive examination of the thermofluid behavior, mathematical modeling techniques, and optimization strategies employed in HVAC systems. Particular emphasis is placed on the development and implementation of dynamic and steady-state models that enable predictive analysis and performance forecasting. The inherently nonlinear and time-varying nature of HVAC systems has necessitated the adoption of advanced computational approaches, including artificial intelligence (AI), machine learning (ML), genetic algorithm (GA), and simulated annealing (SA), to enhance system responsiveness and occupant comfort. AI- and ML- based control strategies have been shown to improve adaptability to real-time environmental and occupancy changes, thereby increasing operational efficiency. However, these approaches are often constrained by high data requirements and computational complexity. Multi-objective optimization frameworks have been proposed to balance energy efficiency with environmental impact, yet challenges remain regarding precision, scalability, and the seamless integration of emerging technologies. The application of digital twin technology has recently gained traction as a viable solution for real-time simulation and virtual testing, offering a non-intrusive means of performance evaluation and system tuning. It is suggested that the future of HVAC optimization lies in the convergence of classical thermodynamic and fluid dynamic modeling with intelligent control architectures, enabling the development of adaptive systems capable of autonomous decision-making. This integrated modeling paradigm is anticipated to support advancements in energy-aware design, occupant-centric climate control, and sustainable building operation. Through this synthesis of traditional and data-driven methodologies, new pathways were proposed for achieving robust, scalable, and intelligent HVAC systems that respond efficiently to evolving environmental and user-specific demands.

Abstract

Full Text|PDF|XML
Understanding thermal transport phenomena in porous structures is of fundamental importance across diverse sectors, including energy systems, construction, electronics, and biomedical engineering. In contrast to conventional dense solids, porous materials exhibit distinct thermal behaviors due to the intrinsic discontinuity between solid phases, pore geometry, and interfacial interactions. In this review, current advances in the understanding of heat transfer mechanisms—namely conduction, convection, and radiation—within porous media were systematically analyzed, with particular emphasis on the influence of porosity, pore morphology, and material composition on effective thermal conductivity. Both open- and closed-cell architectures were examined, and their respective roles in thermal transport were clarified in relation to practical applications. The predictive capability of numerical models was shown to improve significantly through the incorporation of local thermal equilibrium (LTE) and local thermal non-equilibrium (LTNE) models, as well as homogenization techniques. State-of-the-art experimental techniques employed for characterizing thermal transport in porous materials at micro- and nanoscales were also discussed, including steady-state and transient plane source (TPS) methods, along with high-resolution imaging techniques such as X-ray Computed Tomography (XCT) and electron microscopy. Emerging computational strategies, particularly the integration of reinforcement learning and machine learning (ML) algorithms into numerical and analytical models, were identified as promising tools for optimizing the thermal performance of porous structures. Furthermore, recent progress in the development of functional nanostructured and composite porous materials has enabled enhanced performance in applications such as thermal insulation, energy storage, and medical device design. Nonetheless, several critical challenges persist, particularly in experimental reproducibility, accurate model development, and the bridging of multi-scale effects. The strategic integration of artificial intelligence (AI) and data-driven design methodologies is anticipated to play a transformative role in advancing the next generation of porous materials for sustainable thermal management solutions. The findings underscore the necessity of porous structures in accelerating low-carbon technologies and achieving energy-efficient thermal transport systems.
Open Access
Research article
Numerical Analysis of Micropolar Nanofluid Flow near a Stagnation Point over an Inclined Stretching Surface
pennelli saila kumari ,
shaik mohammed ibrahim ,
Prathi Vijaya Kumar ,
Giulio Lorenzini
|
Available online: 03-30-2025

Abstract

Full Text|PDF|XML
The stagnation point flow behavior of a micropolar nanofluid over an inclined stretching surface was numerically investigated. The formulation accounts for the combined effects of Brownian motion, thermophoresis, thermal radiation, velocity slip, and the presence of internal heat generation or absorption. The governing system of non-linear partial differential equations was transformed into a set of coupled ordinary differential equations through the application of appropriate similarity transformations. These transformed equations were solved numerically to analyze the behavior of the fluid near the stagnation region, where both the stretching velocity of the surface and the external free stream velocity are assumed to vary linearly with distance from the stagnation point. Special attention was paid to the influence of dimensionless parameters on key physical quantities, including skin friction coefficient, energy transfer, and Sherwood number. It was observed that increasing the stagnation point parameter leads to a reduction in skin friction, while the inclination angle demonstrates an opposing effect on heat and mass transfer rates. Data extracted from graphical results was tabulated to provide quantitative insights into the impact of varying parameters. The findings offer significant implications for microscale heat and mass transfer systems, particularly in processes involving inclined geometries and nanoparticle-enhanced fluids under magnetohydrodynamic (MHD) effects.
Open Access
Review article
Advances in Waste Heat Recovery Technologies for SOFC/GT Hybrid Systems
luqi zhao ,
hua li ,
ningze jiang ,
tianlong hong ,
yan mao ,
yuyao wang
|
Available online: 03-30-2025

Abstract

Full Text|PDF|XML

Solid oxide fuel cell/gas turbine (SOFC/GT) hybrid systems have been recognized as a promising solution in the pursuit of high-efficiency and low-emission power generation, offering electrical efficiencies exceeding 60% and notable fuel flexibility. However, the substantial amount of high-temperature exhaust gas (typically in the range of 700–800 K) released during operation has presented ongoing challenges in effective thermal energy recovery, thereby constraining further improvements in overall system efficiency. In recent years, various waste heat recovery technologies have been explored for their applicability to SOFC/GT systems. Among the most studied are the supercritical carbon dioxide (SCO₂) cycle, the transcritical carbon dioxide cycle (TRCC), the organic Rankine cycle (ORC), the Kalina cycle (KC), and the steam cycle (ST). In this review, the thermodynamic principles, performance metrics, and thermal integration compatibility associated with each technology were critically examined. In addition, a novel waste heat recovery configuration optimized for SOFC–GT hybrid systems was proposed and discussed. This approach was conceptually validated to enhance total system efficiency and to facilitate the development of advanced combined heat and power (CHP) systems. The results contribute to the broader efforts in clean energy system design and offer technical insights into the next generation of high-performance, low-emission power technologies.

Abstract

Full Text|PDF|XML

Phase change materials (PCMs), an innovative class of functional materials, exhibit the ability to store or release thermal energy through reversible transformations at specific phase transition temperatures, which have been extensively employed in aerospace, military, construction, and refrigeration industries. As oil and gas exploration and development word-widely advance into deeper formations, extremely high-temperature and high-pressure conditions in these environments impose significant challenges on drilling fluids and down-hole instruments, limiting the progress of deep hydrocarbon exploration. To address the technical challenges related to the high-temperature resistant stability of drilling fluids in deep formations, this study investigates the integration of PCMs into drilling fluids. Through theoretical analysis and experimental simulations, the feasibility of utilizing the "phase change heat storage principle" of PCMs to reduce circulating drilling fluid temperatures in boreholes was demonstrated. The results indicate that three selected PCMs exhibit phase transition temperatures in the range of 120–145℃ and phase change latent heat of 90.3–280.6 J/g, showcasing excellent phase change heat storage properties. The materials were found to be compatible with drilling fluids. At a PCM concentration of 12%, the rheological and filtration properties of the drilling fluids still met operational requirements. Incorporating PCMs into drilling fluids effectively reduced the circulating temperature in boreholes, with a more pronounced cooling effect observed at higher PCM concentrations. At a concentration of 12%, the circulating temperature of drilling fluids was reduced by up to 20℃. Additionally, the PCMs demonstrated good reusability, consistently undergoing the "heat storage and release" phase change process, thereby satisfying the circulating cooling demands of drilling fluids. The findings provide a robust reference for PCM integration in high-temperature drilling fluids, particularly in ultra-deep wells with extreme thermal conditions.

Abstract

Full Text|PDF|XML
The enhancement of heat transfer continues to be a critical objective across various high-performance applications, including electronics cooling, automotive thermal systems, and renewable energy systems. Among emerging passive and active strategies, oscillating fin technology has attracted growing interest due to its potential to disrupt thermal boundary layers and augment convective heat transfer. In this review, a systematic analysis of 120 peer-reviewed studies indexed in Scopus, Web of Science, and Google Scholar was conducted, employing the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology to ensure transparency and reproducibility. Search terms such as “oscillating fins,” “heat transfer enhancement,” “numerical simulations,” and “experimental techniques” were used to capture the breadth of relevant literature. Emphasis was placed on the interplay between oscillation parameters—namely frequency, amplitude, and mode of oscillation—and fin geometry, with particular focus on their influence on local and average heat transfer coefficients. Numerical methodologies, including Computational Fluid Dynamics (CFD) and Finite Element Thermal Analysis (FETA), were utilized extensively to characterize fluid motion and thermal gradients around oscillating structures. The reliability of these simulations was critically assessed in light of experimental validations, with instrumentation precision and laboratory conditions considered as key metrics of model fidelity. Challenges related to continuous fin movement, mechanical fatigue, and manufacturing constraints were also identified. To address these issues, recent developments in fatigue-resistant composite materials and advanced fabrication techniques—such as additive manufacturing—were reviewed. Furthermore, the incorporation of novel materials, including porous metals, nanofluids, and piezoelectric components, was explored for their synergistic effects on thermal performance and system durability. This review not only consolidates the current understanding of oscillating fin mechanisms but also highlights gaps in knowledge and opportunities for future research in the development of high-efficiency thermal management systems.
Open Access
Research article
Analysis of Fluid Velocity and Static Pressure Dynamics in a Convergent-Divergent Nozzle: Integration of Soft Computing Techniques with CFD
nindia nova novena ,
zainal arifin ,
catur harsito ,
abram anggit mahadi ,
mochamad subchan mauludin ,
rafiel carino syahroni ,
yuki trisnoaji ,
singgih dwi prasetyo
|
Available online: 12-30-2024

Abstract

Full Text|PDF|XML

A novel approach for analyzing fluid flow dynamics and static pressure distributions within a convergent-divergent nozzle was presented, integrating soft computing techniques with computational fluid dynamics (CFD) simulations performed using Ansys Fluent. The study differs from traditional CFD approaches by leveraging soft computing methods to optimize simulation parameters and enhance the accuracy of predictions. Four distinct fluids—air, hydrogen, nitrogen, and helium—were analyzed across a range of inlet velocities (1 m/s to 5 m/s). The study systematically evaluates the influence of boundary conditions and flow models, including both viscous and inviscid conditions, on the flow patterns and static pressure distributions. The results highlight the substantial impact of fluid density and viscosity on the flow dynamics, particularly for lighter gases such as hydrogen and helium. These gases exhibit higher velocities and less pronounced pressure gradients due to their lower density and viscosity compared to denser fluids like air and nitrogen. Soft computing techniques improve the reliability of these findings by enhancing the predictive capability of the CFD model, allowing for more precise insights into complex fluid behaviors. The implications of these findings are significant across multiple engineering domains, such as aerospace propulsion, chemical processing, and energy systems, where optimizing fluid flow characteristics is critical. The integration of soft computing with CFD provides a robust framework for more accurate modelling of low-density, high-velocity flows and offers valuable insights for the design of more efficient systems. This study underscores the potential of advanced computational techniques in advancing both fluid dynamics research and engineering applications.

load more...
- no more data -
Most cited articles, updated regularly using citation data from CrossRef.
- no more data -