Javascript is required
Search
/
/
Power Engineering and Engineering Thermophysics
OF
Power Engineering and Engineering Thermophysics (PEET)
PMDF
ISSN (print): 2957-9627
ISSN (online): 2957-9635
Submit to PEET
Review for PEET
Propose a Special Issue
Current State
Issue
Volume
2025: Vol. 4
Archive
Home

Power Engineering and Engineering Thermophysics (PEET) is a distinct journal dedicated to the advanced areas of power engineering and engineering thermophysics. It uniquely bridges the gap between theoretical research and practical applications in these fields, with a focus on energy conversion, thermal system optimization, and sustainable energy technologies. PEET is an invaluable resource for professionals and researchers, providing in-depth insights into the latest developments and innovations in power engineering solutions and thermophysical principles. The journal's specialized coverage offers a blend of topics ranging from renewable energy technologies to the efficiency of thermal systems, setting it apart from other engineering publications. Published quarterly by Acadlore, the journal typically releases its four issues in March, June, September, and December each year.

  • Professional Service - Every article submitted undergoes an intensive yet swift peer review and editing process, adhering to the highest publication standards.

  • Prompt Publication - Thanks to our proficiency in orchestrating the peer-review, editing, and production processes, all accepted articles see rapid publication.

  • Open Access - Every published article is instantly accessible to a global readership, allowing for uninhibited sharing across various platforms at any time.

Editor(s)-in-chief(2)
oronzio manca
Università degli Studi della Campania Luigi Vanvitelli, Italy
oronzio.manca@unicampania.it | website
Research interests: Heat Transfer; Thermal Sciences and Applied Thermodynamics
luca piancastelli
University of Bologna, Italy
luca.piancastelli@unibo.it | website
Research interests: Both Land and Air Vehicles; Energy Generation Systems from Renewable Sources; Advanced Vehicle Interfaces; Autonomous Driving System; Restoration of Monuments Using Additive Technologies, etc

Aims & Scope

Aims

Power Engineering and Engineering Thermophysics (PEET) is a dynamic, international open-access journal dedicated to disseminating cutting-edge research in power engineering and engineering thermophysics, including related areas. PEET's mission is to promote a multidisciplinary approach to research in engineering thermophysics, thermal engineering, power machinery, fluid machinery, and chemical process machinery, emphasizing the latest advances in these rapidly evolving fields. The journal invites diverse submissions, from in-depth reviews and research papers to concise communications and Special Issues on specific topics. PEET encourages contributions that not only delve into fundamental studies but also explore the application of these principles in related disciplines.

PEET aims to foster a detailed and expansive dialogue in scientific research, with no restrictions on paper length, allowing for full and reproducible documentation of results. Distinctive features of PEET include:

  • Every publication benefits from prominent indexing, ensuring widespread recognition.

  • A distinguished editorial team upholds unparalleled quality and broad appeal.

  • Seamless online discoverability of each article maximizes its global reach.

  • An author-centric and transparent publication process enhances submission experience.

Scope

The scope of PEET is comprehensive and detailed, addressing a wide array of specialized topics within the field:

  • Co-generation Systems: In-depth exploration of systems that simultaneously generate electricity and useful heat, focusing on efficiency, design, and technological advancements.

  • Building Energy Efficiency: Detailed studies on methods and technologies to reduce energy consumption in buildings, including passive and active strategies, energy management systems, and sustainable building materials.

  • Chemical Process Machinery: Analysis of the machinery used in chemical processes, focusing on design improvements, efficiency enhancements, and safety considerations.

  • Biomass Gasification Power Generation: Examination of biomass as a sustainable source for power generation, including process optimization, gasification technologies, and environmental impact assessments.

  • Heat Transfer in Cryogenic Systems: Studies on the heat transfer mechanisms in systems operating at extremely low temperatures, with applications in space technology, superconductivity, and liquefied natural gas.

  • Combustion Thermophysics of Coal: Research on the combustion properties of coal, including flame dynamics, emission control, and efficiency optimization.

  • Energy Utilization in Refrigeration and Air Conditioning: Investigations into the efficiency and environmental impact of refrigeration and air conditioning systems, including alternative refrigerants and advanced cooling technologies.

  • Photocatalytic Hydrogen Production: Exploration of hydrogen production methods using photocatalysis, focusing on catalyst development, reaction mechanisms, and system design.

  • Nano/Microsystem Temperature Delivery: Study of temperature control and management in nano and microsystems, relevant in semiconductor manufacturing, microfluidics, and nanotechnology.

  • Thermal Engineering: Broad research into thermal processes in engineering, including heat exchangers, thermal insulation, and system design for industrial applications.

  • Thermodynamic Cycle Theory and System Simulation: Advanced theoretical analysis and computer simulations of thermodynamic cycles, with applications in power plants, refrigeration cycles, and heat pumps.

  • Thermofluid Mechanics and Turbomachinery: Investigations into the fluid mechanics and dynamics in turbomachinery, including turbines, compressors, and pumps, focusing on performance optimization and design innovations.

  • Power Machinery and Engineering: Research on machinery used in power generation, transmission, and distribution, with a focus on technological advancements, reliability, and sustainable practices.

  • Fluid Machinery and Engineering: Studies on the design, operation, and optimization of fluid machinery, including hydraulic systems, fluid dynamics, and flow control technologies.

  • Engineering Thermophysics: Exploration of the physical principles in engineering processes, focusing on energy transfer, thermodynamic properties, and material behaviors at various temperatures.

  • Solar Energy Utilization: Innovative research on capturing and utilizing solar energy, including photovoltaic systems, solar thermal technologies, and solar power plant efficiency.

  • Oil Alternatives: Investigation of alternative energy sources to oil, including biofuels, hydrogen energy, and synthetic fuels, focusing on sustainability and environmental impact.

  • Fuel Cells: Advanced research in the development and application of fuel cell technologies, including materials, design, and system integration for various applications.

  • New Energy Vehicles: Exploration of electric, hybrid, and alternative fuel vehicles, focusing on energy systems, battery technologies, and infrastructure development.

  • Electric Vehicle Multi-Energy Power Control Systems: Study of control systems in electric vehicles for managing multiple energy sources, focusing on efficiency, integration, and smart grid compatibility.

  • Internal Combustion Engine Combustion and Emission Control: Innovations in internal combustion engines, addressing combustion efficiency, emission reduction technologies, and alternative fuels.

  • Automotive Powertrain and Control: Research on automotive powertrain systems, including advancements in transmission systems, drivetrain technologies, and vehicle dynamics control.

Articles
Recent Articles
Most Downloaded
Most Cited

Abstract

Full Text|PDF|XML

Phase change materials (PCMs), an innovative class of functional materials, exhibit the ability to store or release thermal energy through reversible transformations at specific phase transition temperatures, which have been extensively employed in aerospace, military, construction, and refrigeration industries. As oil and gas exploration and development word-widely advance into deeper formations, extremely high-temperature and high-pressure conditions in these environments impose significant challenges on drilling fluids and down-hole instruments, limiting the progress of deep hydrocarbon exploration. To address the technical challenges related to the high-temperature resistant stability of drilling fluids in deep formations, this study investigates the integration of PCMs into drilling fluids. Through theoretical analysis and experimental simulations, the feasibility of utilizing the "phase change heat storage principle" of PCMs to reduce circulating drilling fluid temperatures in boreholes was demonstrated. The results indicate that three selected PCMs exhibit phase transition temperatures in the range of 120–145℃ and phase change latent heat of 90.3–280.6 J/g, showcasing excellent phase change heat storage properties. The materials were found to be compatible with drilling fluids. At a PCM concentration of 12%, the rheological and filtration properties of the drilling fluids still met operational requirements. Incorporating PCMs into drilling fluids effectively reduced the circulating temperature in boreholes, with a more pronounced cooling effect observed at higher PCM concentrations. At a concentration of 12%, the circulating temperature of drilling fluids was reduced by up to 20℃. Additionally, the PCMs demonstrated good reusability, consistently undergoing the "heat storage and release" phase change process, thereby satisfying the circulating cooling demands of drilling fluids. The findings provide a robust reference for PCM integration in high-temperature drilling fluids, particularly in ultra-deep wells with extreme thermal conditions.

Abstract

Full Text|PDF|XML
The enhancement of heat transfer continues to be a critical objective across various high-performance applications, including electronics cooling, automotive thermal systems, and renewable energy systems. Among emerging passive and active strategies, oscillating fin technology has attracted growing interest due to its potential to disrupt thermal boundary layers and augment convective heat transfer. In this review, a systematic analysis of 120 peer-reviewed studies indexed in Scopus, Web of Science, and Google Scholar was conducted, employing the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology to ensure transparency and reproducibility. Search terms such as “oscillating fins,” “heat transfer enhancement,” “numerical simulations,” and “experimental techniques” were used to capture the breadth of relevant literature. Emphasis was placed on the interplay between oscillation parameters—namely frequency, amplitude, and mode of oscillation—and fin geometry, with particular focus on their influence on local and average heat transfer coefficients. Numerical methodologies, including Computational Fluid Dynamics (CFD) and Finite Element Thermal Analysis (FETA), were utilized extensively to characterize fluid motion and thermal gradients around oscillating structures. The reliability of these simulations was critically assessed in light of experimental validations, with instrumentation precision and laboratory conditions considered as key metrics of model fidelity. Challenges related to continuous fin movement, mechanical fatigue, and manufacturing constraints were also identified. To address these issues, recent developments in fatigue-resistant composite materials and advanced fabrication techniques—such as additive manufacturing—were reviewed. Furthermore, the incorporation of novel materials, including porous metals, nanofluids, and piezoelectric components, was explored for their synergistic effects on thermal performance and system durability. This review not only consolidates the current understanding of oscillating fin mechanisms but also highlights gaps in knowledge and opportunities for future research in the development of high-efficiency thermal management systems.

Abstract

Full Text|PDF|XML

The thermal performance and energy efficiency of Photovoltaic Thermal (PVT) systems were investigated through the integration of Phase Change Materials (PCMs) combined with distinct container configurations. Two types of PCMs—paraffin wax, an organic material, and Polyethylene Glycol 1000 (PEG-1000), a polymer-based alternative—were embedded within two container designs: a plain container and a baffled container. To evaluate the impact of PCM selection and container geometry on system performance, a series of numerical simulations were conducted using Computational Fluid Dynamics (CFD) in ANSYS Fluent under varying solar irradiance levels of 300, 600, 900, and 1200 W/m². The results revealed that PCM integration significantly mitigates the operating temperature of PV cells, contributing to enhanced thermal stability and electrical conversion efficiency. At the highest irradiance of 1200 W/m², the plain paraffin configuration attained a minimum cell temperature of 27.4℃ and achieved the highest electrical efficiency of 11.7%. Conversely, the baffled PEG-1000 configuration exhibited a slightly higher peak temperature of 28.1℃ with a corresponding efficiency of 11.18%. Although the baffled container promoted improved internal heat distribution, the plain configuration demonstrated superior overall thermal regulation. These findings underscore the critical influence of PCM thermal properties and container geometry on the operational sustainability of PVT systems. This study provides new insights into PCM-container coupling strategies, offering a valuable framework for the development of high-efficiency, sustainable solar energy systems.

Open Access
Research article
Operational Analysis and Optimization of a District Heating Plant Using Wood Chips
srđan vasković ,
ljubiša tanić ,
petar gvero ,
azrudin husika
|
Available online: 12-30-2024

Abstract

Full Text|PDF|XML

The transition from outdated biomass boiler systems to modern, efficient district heating technologies represents a critical pathway toward sustainable energy production. In this study, the replacement of obsolete solid biomass-fueled boilers with a new wood chip-based heating system in the district heating plant of Pale, Bosnia and Herzegovina, was analyzed under real-world operational conditions. Historical operational data, including annual fuel consumption, were obtained directly from the facility. The degree-day method was applied to evaluate the thermal efficiency of the former heating system and to estimate the annual fuel demand for the newly installed wood chip-based infrastructure. A key component of this transition involves the reliability and efficiency of the wood chip supply chain. Therefore, the logistical feasibility of securing a continuous, local, and renewable wood chip fuel source was examined, including the assessment of storage capacity and supply chain resilience. Furthermore, a scenario-based simulation was conducted to project the cost of heat production under varying fuel price conditions and market dynamics. Through this integrated approach, a replicable methodology was proposed for replacing legacy biomass heating systems with environmentally sustainable, economically viable district heating technologies based on locally sourced wood chips. The findings offer a practical roadmap for municipalities aiming to achieve energy transition targets through the adoption of locally available renewable energy sources, with particular emphasis on operational feasibility, fuel logistics, and cost-effectiveness.

Abstract

Full Text|PDF|XML

The present paper emphasizes finding the solution for a fuzzy fractional heat conduction equation using the homotopy analysis transform method (HATM). The HATM combines two powerful, well-known methods: homotopy analysis method and the Laplace transform method. The approximate solution of the fuzzy fractional heat conduction equation is obtained by using HATM. Comparison with existing methods shows that the results obtained using the proposed method are in good agreement with the exact solutions available in the literature. All the numerical computations justify the proposed method is very efficient, effective, and simple for obtaining an approximate solution of the fuzzy time-fractional heat conduction equation.

Open Access
Research article
Analysis of Fluid Velocity and Static Pressure Dynamics in a Convergent-Divergent Nozzle: Integration of Soft Computing Techniques with CFD
nindia nova novena ,
zainal arifin ,
catur harsito ,
abram anggit mahadi ,
mochamad subchan mauludin ,
rafiel carino syahroni ,
yuki trisnoaji ,
singgih dwi prasetyo
|
Available online: 12-30-2024

Abstract

Full Text|PDF|XML

A novel approach for analyzing fluid flow dynamics and static pressure distributions within a convergent-divergent nozzle was presented, integrating soft computing techniques with computational fluid dynamics (CFD) simulations performed using Ansys Fluent. The study differs from traditional CFD approaches by leveraging soft computing methods to optimize simulation parameters and enhance the accuracy of predictions. Four distinct fluids—air, hydrogen, nitrogen, and helium—were analyzed across a range of inlet velocities (1 m/s to 5 m/s). The study systematically evaluates the influence of boundary conditions and flow models, including both viscous and inviscid conditions, on the flow patterns and static pressure distributions. The results highlight the substantial impact of fluid density and viscosity on the flow dynamics, particularly for lighter gases such as hydrogen and helium. These gases exhibit higher velocities and less pronounced pressure gradients due to their lower density and viscosity compared to denser fluids like air and nitrogen. Soft computing techniques improve the reliability of these findings by enhancing the predictive capability of the CFD model, allowing for more precise insights into complex fluid behaviors. The implications of these findings are significant across multiple engineering domains, such as aerospace propulsion, chemical processing, and energy systems, where optimizing fluid flow characteristics is critical. The integration of soft computing with CFD provides a robust framework for more accurate modelling of low-density, high-velocity flows and offers valuable insights for the design of more efficient systems. This study underscores the potential of advanced computational techniques in advancing both fluid dynamics research and engineering applications.

Abstract

Full Text|PDF|XML
In this study, we investigate the heat and mass transfer characteristics of an unsteady mixed convection magnetohydrodynamic (MHD) flow of Casson fluid through a porous medium in the presence of thermal diffusion and heat source effects. The flow is considered between isothermal inclined plates, incorporating the influences of Joule heating and viscous dissipation. Using dimensionless variables, the governing partial differential equations are transformed into their dimensionless form. The resulting dimensionless equations are solved empirically through the perturbation methodology. The effects of various critical parameters on the velocity, temperature, and concentration distributions within the boundary layer are analyzed with the aid of graphical representations. Additionally, numerical values of skin friction, Nusselt number, and Sherwood number near the plate are examined for different parameter values and presented in tabular form. The findings provide a deeper understanding of heat and mass transfer mechanisms in MHD flows through porous media, which are relevant to various industrial and engineering applications.

Abstract

Full Text|PDF|XML

The concept of heat commodification is proposed as a sustainable solution for global energy management, with heat being treated as a tradable commodity in an international market. In such a market, heat would be assigned a value based on factors such as available enthalpy, heat grade (temperature), and the time at which it is delivered. Heat, as the currency of this market, would allow for a decentralized and dynamic exchange system. A central heat market could be established, extending down to individual households where excess heat—such as waste heat from household appliances—could be stored and traded locally, potentially through a peer-to-peer model or a virtual marketplace. A key innovation in this system would be the development of modular heat storage solutions, analogous to gas bottles, that allow consumers to store excess heat and exchange it within the market. These “heat packets" would be rechargeable with heat, as opposed to gas, and could be traded both physically or digitally. To ensure inclusivity and sustainability, it is suggested that these heat packets be based on nature-inspired storage materials that can efficiently store renewable or waste heat with minimal environmental impact. Specifically, thermochemical storage media, such as salt, would be employed to facilitate charging and discharging processes using water as a trigger. Such solid-state storage systems would allow heat to be stored indefinitely with minimal heat loss to the environment, even in lower temperature conditions. This paradigm shift could enable the cross-continental transport of heat packets, revolutionizing the global energy market. The proposed system would also eliminate the need for electricity grids and reduce inefficiencies associated with energy conversion, as heat can be stored and utilized directly for both heating and cooling applications. Furthermore, the reliance on heat-driven refrigeration systems would obviate the need for electricity-driven heat pumps or chillers. This approach offers a potential solution to global energy challenges by facilitating a sustainable and efficient heat exchange network on a global scale.

Open Access
Research article
Thermal and Hydrodynamic Performance Analysis of Water-Cooled Heat Sinks Using Aluminum and Structural Steel Materials
daffa’ fuad hanan ,
gilang maulana lazuardi ,
yuki trisnoaji ,
singgih dwi prasetyo ,
mochamad subchan mauludin ,
catur harsito ,
abram anggit mahadi ,
zainal arifin
|
Available online: 09-29-2024

Abstract

Full Text|PDF|XML

Water-cooled heat sinks are efficient cooling solutions for high-heat dissipation applications in industrial and electronic systems. This study investigates water-cooled heat sinks' thermal and hydrodynamic performance through Computational Fluid Dynamics (CFD) simulations. The fluid flow distribution, heat transfer characteristics, and thermal efficiency of various cooling channel geometries were examined under controlled conditions, including a mass flow rate of 0.05 kg/s, an inlet fluid temperature of 22℃, and a convection film coefficient of 80 W/m²℃ between the fluid and heat sink. Additionally, the convection coefficient between the heat sink body and its fins to the environment was set at 10 W/m²℃, with an ambient temperature of 22℃ and a heat flux of 10,000 W/m² applied to the heat sink's base. The analysis reveals that the coolant channel geometry, flow velocity, and the materials' thermophysical properties strongly influence the system's thermal performance and pressure drop. The optimized channel configuration significantly enhanced the heat dissipation efficiency, achieving an increase of 49.1% and a temperature reduction of 59℃. Furthermore, a thermal efficiency of 40.97% and an overall system efficiency of 45.04% were attained. These findings highlight the substantial role of optimized channel geometries in enhancing the performance of water-cooled heat sinks, leading to more efficient and effective cooling systems. The study demonstrates that CFD simulations can be a powerful tool in identifying key design parameters that maximize heat transfer efficiency in water-cooled heat sinks.

Open Access
Research article
Diffusion Characteristics of Combustible Gas Leaks in the FPSO Upper Module
longting wang ,
yaonan wu ,
zhen long ,
zimo liu ,
zhihui liu ,
zhang shi ,
yanqun yu
|
Available online: 09-19-2024

Abstract

Full Text|PDF|XML

To investigate the variation in the diffusion patterns of natural gas leaks in the Floating Production Storage and Offloading (FPSO) system, with the aim of formulating appropriate emergency response strategies and minimizing accident losses, a study was conducted on the gas leak issues of oil and gas processing equipment in the FPSO upper module. A consequence prediction and assessment model was established based on Computational Fluid Dynamics (CFD) methods. Sixteen working conditions and one control working condition were developed to simulate the diffusion characteristics of combustible gas leaks. The simulations provided insights into the gas leakage patterns under different conditions and identified the most hazardous scenario for gas leaks in the FPSO upper module. The results indicate that the density and shape of the equipment within the upper module significantly influence the diffusion outcome. After a leak, high concentrations of combustible gas were observed near the crude oil heat exchanger skid in Industrial Zone II. The effects of individual factors on gas diffusion were significant, and the interactions among multiple factors were complex. Wind speed had a more pronounced effect on longitudinal gas diffusion compared to wind direction and leak aperture, while wind direction significantly influenced lateral gas diffusion. The leak aperture, on the other hand, had a more substantial impact on vertical gas diffusion.

Abstract

Full Text|PDF|XML

The thermal behavior and fluid dynamics of Nano-Enhanced Phase Change Materials (NEPCM) in enclosed systems have been investigated using numerical simulations, focusing on the effects of time-varying temperature profiles and nanoparticle concentration. The analysis reveals that the inclusion of nanoparticles significantly enhances the fluid flow velocity and streamlining within the enclosure, particularly for aluminium oxide (Al2O3), copper oxide (CuO), and zinc oxide (ZnO) nanoparticles. The results indicate that an increase in nanoparticle concentration leads to an acceleration in fluid flow and improved heat transfer efficiency, with distinct phase change dynamics observed across different concentrations. The study demonstrates that nanomaterials hold substantial potential for enhancing the thermal performance of NEPCM systems. These enhancements can contribute to greater efficiency in thermal energy storage (TES) and heat transfer processes, particularly in industrial applications requiring energy optimization. The findings align with previous research, emphasizing the positive correlation between nanoparticle concentration and velocity streamlining. This work provides valuable insights for the future exploration of different nanoparticle types and concentrations, paving the way for the development of more efficient NEPCM systems in advanced thermal systems.

Abstract

Full Text|PDF|XML
The performance of open-type refrigerated display cabinets has been rigorously examined through the development and application of two comprehensive block schemes, which integrate numerical simulations with experimental research. Central to these schemes is the use of a simplified two-dimensional, time-dependent computational fluid dynamics (CFD) model, designed to evaluate and optimize airflow patterns, thermal behavior, and energy efficiency within the cabinets. The numerical simulations, validated against experimental data, demonstrate that the strategic design and configuration of air curtains and internal components significantly mitigate the impact of ambient air, thereby reducing temperature fluctuations that are critical for maintaining food quality and safety. The application of these block schemes has been shown to enhance energy efficiency and reduce electrical consumption, contributing to operational cost savings. The strong correlation between CFD results and experimental findings underscores the reliability of these models for accurately representing real-world conditions. Future investigations could benefit from exploring additional geometric configurations and incorporating more advanced CFD techniques to further refine the performance of refrigerated display systems. This integrated approach offers a robust framework for improving the operational effectiveness and food preservation capabilities of open-type refrigerated display cabinets.

Abstract

Full Text|PDF|XML

The study aimed to compare the effects of thermal stratification ($S$), anisotropic parameters ($k^*$ and $\theta$), and buoyancy force distribution parameter ($m^*$) on natural convection in fluids characterized by high and low Prandtl numbers. The second-order coupled partial differential equations governing the problem were initially converted into ordinary differential equations through the Laplace transform technique. The D'Alembert method was then applied to systematically decouple these equations without altering their original order. Subsequently, the closed-form solutions in the Laplace domain were transformed into their respective time domains using a numerical scheme based on the Riemann sum algorithm. The research established that reverse flow is feasible under certain conditions, occurring more rapidly in fluids with lower Prandtl numbers. Additionally, it was observed that an increase in $k^*$ and $S$ reduces skin friction on the bounding plates, whereas an increase in $\theta$ enhances skin friction on both channel walls.

load more...
- no more data -
- no more data -