Javascript is required
Search
Volume 4, Issue 3, 2025

Abstract

Full Text|PDF|XML

Dealing with privacy and security becomes more complicated nowadays with the emergence of big data era. Privacy, data value, and system efficiency should be managed using multiple solutions in current analytics. In this paper, privacy-preserving techniques were selected and reviewed for big data analysis to reduce threats imposed on healthcare data. Various security solutions, including k-anonymity, differential privacy, homomorphic encryption, and secure multi-party computation (SMPC), were programmed and examined using the Medical Information Mart for Intensive Care III (MIMIC-III) healthcare dataset. Assessments were conducted cautiously for each method of data collection in respect of security, time required, capacity of handling large data sets, usefulness of the data, and compliance with regulations. By using differential privacy, it was possible to maintain a balance between privacy and utility by allocating additional resources to the program. The security of data was facilitated by homomorphic encryption though it was not easy to operate and reduce the speed of computer systems. Moreover, achieving scalability in the SMPC required a significant amount of computing power. Although k-anonymity enhanced data utility, it was vulnerable to certain types of attacks. Protecting privacy in big data would limit the performance of systems; for multiple copies of data, scientists can now utilize analytics, differential privacy, and the SMPC, which is highly effective for analyzing private data. However, such approaches should be further optimized to handle real-time processing in big data applications. Experimental evaluation showed that processing 10,000 patient records using differential privacy took an average of 2.3 seconds per query and retained 92% of data utility, while homomorphic encryption required 15.7 seconds per query with 88% utility retention. The SMPC achieved a high degree of privacy with 12.5 seconds per query but slightly reduced scalability. As recommended in this study, the implementation of privacy-focused solutions in big data could help researchers and companies establish appropriate privacy policies in healthcare and other similar areas.

- no more data -