Javascript is required
Search
Volume 2, Issue 4, 2023
Open Access
Rapid communication
Comparative Analysis of Seizure Manifestations in Alzheimer’s and Glioma Patients via Magnetic Resonance Imaging
jayanthi vajiram ,
sivakumar shanmugasundaram ,
rajeswaran rangasami ,
utkarsh maurya
|
Available online: 10-24-2023

Abstract

Full Text|PDF|XML

A notable association between Alzheimer's Disease and Epilepsy, two divergent neurological conditions, has been established through previous research, illustrating an elevated seizure development risk in individuals diagnosed with Alzheimer’s Disease (AD). The hippocampus, fundamental in both seizure and tumour pathology, is intricately investigated herein. The subsequent aberrant electrical activity within this brain region, frequently implicated in seizure onset and propagation, underpins a complex relationship between degenerative cerebral changes and seizure incidence. Symptomatic manifestations in hippocampal glioma include, but are not limited to, seizures, memory deficits, and language difficulties, contingent upon the tumour's location and size. Thus, the cruciality of proficient seizure detection and analysis is underscored. Employing canny edge detection and thresholding to delineate contours and boundaries within images, an analysis was conducted by transmuting grayscale or colour images into a binary format. The input dataset, utilised for the training and testing of machine and deep-learning models, comprised images of seizures. These models were subsequently trained to discern patterns and features within the images, facilitating the differentiation between two predefined classes. Resultantly, the models predicted, with a defined accuracy level, the presence or absence of a seizure within a new image. The Support Vector Machine (SVM) and Convolutional Neural Network (CNN) models demonstrated classification accuracies of 96% and 95%, respectively. By analysing performance metrics on a per-slice basis, the localization of seizure activity within the brain could be visualised, offering valuable insights into regions affected by this activity. The amalgamation of edge detection, feature extraction, and classification models proficiently discriminated between seizure and non-seizure activities, providing pivotal insights for the diagnosis and therapeutic strategies for epilepsy. Further, studying these neurological alterations can illuminate the progression and severity of cognitive and emotional deficits within affected individuals, whilst advancements in diagnostic methodologies, such as Magnetic Resonance Imaging (MRI), facilitate an enriched comparative analysis.

Open Access
Research article
Enhancing Healthcare Data Security in IoT Environments Using Blockchain and DCGRU with Twofish Encryption
kumar raja depa ramachandraiah ,
naga jagadesh bommagani ,
praveen kumar jayapal
|
Available online: 11-30-2023

Abstract

Full Text|PDF|XML

In the rapidly evolving landscape of digital healthcare, the integration of cloud computing, Internet of Things (IoT), and advanced computational methodologies such as machine learning and artificial intelligence (AI) has significantly enhanced early disease detection, accessibility, and diagnostic scope. However, this progression has concurrently elevated concerns regarding the safeguarding of sensitive patient data. Addressing this challenge, a novel secure healthcare system employing a blockchain-based IoT framework, augmented by deep learning and biomimetic algorithms, is presented. The initial phase encompasses a blockchain-facilitated mechanism for secure data storage, authentication of users, and prognostication of health status. Subsequently, the modified Jellyfish Search Optimization (JSO) algorithm is employed for optimal feature selection from datasets. A unique health status prediction model is introduced, leveraging a Deep Convolutional Gated Recurrent Unit (DCGRU) approach. This model ingeniously combines Convolutional Neural Network (CNN) and Gated Recurrent Unit (GRU) processes, where the GRU network extracts pivotal directional characteristics, and the CNN architecture discerns complex interrelationships within the data. Security of the data management system is fortified through the implementation of the twofish encryption algorithm. The efficacy of the proposed model is rigorously evaluated using standard medical datasets, including Diabetes and EEG Eyestate, employing diverse performance metrics. Experimental results demonstrate the model's superiority over existing best practices, achieving a notable accuracy of 0.884. Furthermore, comparative analyses with the Advanced Encryption Standard (AES) and Elliptic Curve Cryptography (ECC) models reveal enhanced performance metrics, with the proposed model achieving a processing time and throughput of 40 and 45.42, respectively.

Abstract

Full Text|PDF|XML

The swift global spread of Corona Virus Disease 2019 (COVID-19), identified merely four months prior, necessitates rapid and precise diagnostic methods. Currently, the diagnosis largely depends on computed tomography (CT) image interpretation by medical professionals, a process susceptible to human error. This research delves into the utility of Convolutional Neural Networks (CNNs) in automating the classification of COVID-19 from medical images. An exhaustive evaluation and comparison of prominent CNN architectures, namely Visual Geometry Group (VGG), Residual Network (ResNet), MobileNet, Inception, and Xception, are conducted. Furthermore, the study investigates ensemble approaches to harness the combined strengths of these models. Findings demonstrate the distinct advantage of ensemble models, with the novel deep learning (DL)+ ensemble technique notably surpassing the accuracy, precision, recall, and F-score of individual CNNs, achieving an exceptional rate of 99.5%. This remarkable performance accentuates the transformative potential of CNNs in COVID-19 diagnostics. The significance of this advancement lies not only in its reliability and automated nature, surpassing traditional, subjective human interpretation but also in its contribution to accelerating the diagnostic process. This acceleration is pivotal for the effective implementation of containment and mitigation strategies against the pandemic. The abstract delineates the methodological choices, highlights the unparalleled efficacy of the DL+ ensemble technique, and underscores the far-reaching implications of employing CNNs for COVID-19 detection.

- no more data -