This work aims to apply the spherical fuzzy set (SFS), a flexible framework for handling ambiguous human opinions, to improve decision-making processes in recycled water. It specifically looks at the application of Sugeno-Weber (SW) triangular norms in the spherical fuzzy (SF) information domain, providing reliable approximations that are necessary for decision-making. A new class of aggregation operators is presented in this paper. These operators are specifically made for spherical fuzzy information systems and include the interval value spherical fuzzy Sugeno–Weber power weighted average (IVSFSWPA), interval value spherical fuzzy Sugeno–Weber power geometric (IVSFSWPWG), and interval value spherical fuzzy Sugeno–Weber power weighted average (IVSFSWPWA). The realistic features and special cases of these operators are demonstrated, highlighting how well they fit into practical scenarios. A new method for multi-attribute decision-making (MADM) is used for a range of real-world applications with different requirements or characteristics. The efficacy of the recommended methodologies is demonstrated with an example of a recycled water selection process. Additionally, a thorough comparison method is provided to show how the suggested aggregation strategies work and are relevant by contrasting their results with those of the current methods. The study's conclusion highlights the potential contribution of the recommended research to the advancement of decision-making techniques in dynamic and complex environments. It also summarizes its findings and discusses its prospects moving forward.