[1] Ben Akiva, M. & Lerman, S., Discrete Choice Analysis: Theory and Application to Travel Demand. MIT Press: Cambridge, MA, 1985.
[2] Eriksson, L., Garvill, J. & Nordlund, A.M., Acceptability of single and combined transport policy measures: The importance of environmental and policy specific beliefs. Transportation Research Part A, 42(8), pp. 1117–1128, 2008. tra.2008.03.006. [Crossref] [3] Habibian, M. & Kermanshah, M., Coping with congestion: Understanding the role of simultaneous transportation demand management policies on commuters. Transport Policy, 30, pp. 229–237, 2013. [Crossref] [4] Meyer, M.D., Demand management as an element of transportation policy: using carrots and sticks to influence travel behaviour. Transportation Research Part A, 33(7–8), pp. 575–599, 1999. [Crossref] [5] Chien, S. & Schonfeld, P., Joint optimization of a rail transit line and its feeder bus system. Journal of Advanced Transportation, 32(3), pp. 253–284, 1998. DOI: 10.1002/ atr.5670320302.
[6] Kuan, S.N., Ong, H.L. & Ng, K.M., Solving the feeder bus network design problem by genetic algorithms and ant colony optimization. Advances in Engineering Software 37(6), pp. 351–359, 2006. [Crossref] [7] Shrivastav, P. & Dhingra, S.L., Development of feeder routes for suburban railway stations using heuristic approach. Journal of Transportation Engineering, 127(4), pp. 334–341, 2001. [Crossref] [8] D’Acierno, L., Gallo, M., Montella, B. & Placido, A., The definition of a model framework for managing rail systems in the case of breakdowns. Proceedings of the 16th IEEE Conference on Intelligent Transportation Systems (ITSC), The Hague, The Netherlands, pp. 1059–1064, 2013. [Crossref] [9] Abenoza, R.F., Cats, O. & Susilo, Y.O., Travel satisfaction with public transport: Determinants, user classes, regional disparities and their evolution. Transportation Research Part A, 95, pp. 64–84, 2017. [Crossref] [10] dell’Olio, L., Ibeas, A. & Cecin, P., The quality of service desired by public transport users. Transport Policy, 18(1), pp. 217–227, 2011. [Crossref] [11] de Ona, J. & de Ona, R., Quality of service in public transport based on customer satisfaction surveys: A review and assessment of methodological approaches. Transportation Science, 49(3), pp. 605–622, 2014. [Crossref] [12] Consilvio, A., Di Febbraro, A. & Sacco, N., Stochastic scheduling approach for predictive risk-based railway maintenance. Proceedings of 2016 IEEE International Conference on Intelligent Rail Transportation (ICIRT), Birmingham, UK, August 2016. [Crossref] [13] Pereira, P., Ribeiro, R.P. & Gama, J., Failure prediction: An application in the railway industry. Lecture Notes in Computer Science, 8777, pp. 264–275, 2014. [Crossref] [14] Corman, F. & Meng, L., A review of online dynamic models and algorithms for railway traffic management. IEEE Transactions on Intelligent Transportation Systems, 16(3), pp. 1274–1284, 2015. [Crossref] [15] Gao, Y., Kroon, L., Schmidt, M. & Yang, L., Rescheduling a metro line in an overcrowded situation after disruptions. Transportation Research Part B, 93, pp. 425–449, 2016. [Crossref] [16] Zhan, S., Zhao, J. & Peng, Q., Real-time train rescheduling on high-speed railway under partial segment blockages. Journal of the China Railway Society, 38(10), pp. 1–13, 2016. [Crossref] [17] Cacchiani, V., Huisman, D., Kidd, M., Kroon, L., Toth, P., Veelenturf, L. & Wagenaar, J., An overview of recovery models and algorithms for real-time railway rescheduling. Transportation Research Part B, 63, pp. 15–37, 2014. [Crossref] [18] Dollevoet, T., Huisman, D., Schmidt, M. & Schöbel, A., Delay management with rerouting of passengers. Transportation Science, 46(1), pp. 74–89, 2012. DOI: 10.1287/ trsc.1110.0375.
[19] Corman F., D’Ariano A., Pacciarelli D. & Pranzo, M., A tabu search algorithm for rerouting trains during rail operations. Transportation Research Part B, 44(1), pp. 175–192, 2010. [Crossref] [20] Ghaemi N., Goverde R.M.P. & Cats O., Railway disruption timetable: Short-turnings in case of complete blockage. Proceedings of 2016 IEEE International Conference on Intelligent Rail Transportation (ICIRT), Birmingham, UK, August 2016. DOI: 10.1109/ ICIRT.2016.7588734.
[21] Montella, B., Gallo, M. & D’Acierno, L., Multimodal network design problems. Advances in Transport, 5, pp. 405–414, 2000. [Crossref] [22] D’Acierno L., Placido A., Botte M. & Montella B., A methodological approach for managing rail disruptions with different perspectives. International Journal of Mathematical Models and Methods in Applied Sciences, 10, pp. 80–86, 2016. http://www. naun.org/main/NAUN/ijmmas/2016/a202001-419.pdf
[23] Botte M., Di Salvo C., Placido A., Montella B. & D’Acierno L., A neighbourhood search algorithm for determining optimal intervention strategies in the case of metro system failures. International Journal of Transport Development and Integration, 1(1), pp. 63–73, 2017. [Crossref] [24] Cadarso, L. & Marìn, A., Improved rapid transit network design model: considering transfer effects. Annals of Operations Research, forthcoming. 015-1999-x. [Crossref] [25] Lee, Y.J. & Vuchic, V.R., Transit network design with variable demand. Journal of Transportation Engineering, 131(1), pp. 1–10, 2006. 947X(2005)131:1(1). [Crossref] [26] Marìn, A.G. & Garcìa-Ròdenas, R., Location of infrastructure in urban railway networks. Computers & Operations Research, 36(5), pp. 1461–1477, 2009. cor.2008.02.008. [Crossref] [27] Cantarella, G.E., A general fixed-point approach to multimode multi-user equilibrium assignment with elastic demand. Transportation Science, 31(2), pp. 107–128, 1997. [Crossref] [28] D’Acierno, L., Gallo, M. & Montella, B., Ant Colony Optimisation approaches for the transportation assignment problem. WIT Transaction on the Built Environment, 111, pp. 37–48, 2010. [Crossref] [29] Nguyen, S., Pallottino, S. & Gendreau, M., Implicit enumeration of hyperpaths in a logit model for transit networks. Transportation Science, 32(1), pp. 54–64, 1998. [Crossref] [30] Nuzzolo, A., Russo, F. & Crisalli, U., A doubly dynamic schedule-based assignment model for transit networks. Transportation Sciences, 35(3), pp. 268–285, 2001. [Crossref] [31] D’Acierno, L., Gallo, M., Montella, B. & Placido, A., Analysis of the interaction between travel demand and rail capacity constraints. WIT Transactions on the Built Environment, 128, pp. 197–207, 2012. [Crossref] [32] Kunimatsu, T., Hirai, C. & Tomii, N., Train timetable evaluation from the viewpoint of passengers by microsimulation of train operation and passenger flow. Electrical Engineering in Japan, 181(4), pp. 51–62, 2012. [Crossref] [33] D’Acierno, L., Botte, M., Placido, A., Caropreso, C. & Montella, B., Methodology for determining dwell times consistent with passenger flows in the case of metro services. Urban Rail Transit, 3(2), pp. 73–89, 2017. [Crossref] [34] Ercolani, M., Placido, A., D’Acierno, L. & Montella, B., The use of microsimulation models for the planning and management of metro systems. WIT Transactions on the Built Environment, 135, pp. 509–521, 2014. [Crossref] [35] Placido, A. & D’Acierno, L., A methodology for assessing the feasibility of fleet compositions with dynamic demand. Transportation Research Procedia, 10, pp. 595–604, 2015. [Crossref] [36] Caropreso, C., Di Salvo, C., Botte, M. & D’Acierno, L., A long term analysis of passenger flows on a regional rail line. International Journal of Transport Development and Integration, 1(3), pp. 329–338, 2017. [Crossref] [37] Cascetta, E., Papola, A., Marzano, V., Simonelli, F. & Vitiello, I., Quasi-dynamic estimation of o–d flows from traffic counts: Formulation, statistical validation and performance analysis on real data. Transportation Research Part B, 55, pp. 171–187, 2013. [Crossref] [38] Di Mauro, R., Botte, M. & D’Acierno, L., An analytical methodology for extending passenger counts in a metro system. International Journal of Transport Development and Integration, 1(3), pp. 589–600, 2017. [Crossref]