[1] European Commission. Climate Action: Reducing emissions from transport, http://ec.europa.eu/clima/policies/transport/index_en.htm (accessed March 2016).
[2] Dell'Acqua, G. & Russo, F., Safety performance functions for low-volume roads.The Baltic Journal of Road and Bridge Engineering, 6(4), pp. 225–234, 2011. [Crossref] [3] Dell'Acqua, G., Russo, F. & Biancardo S.A., Risk-type density diagrams by crash typeon two-lane rural roads. Journal of Risk Research, 16(10), pp. 1297–1314, 2013. [Crossref] [4] Bifulco, G.N., Pariota, L., Brackstione, M. & McDonald, M., Driving behaviour modelsenabling the simulation of advanced driving assistance systems: Revisiting the actionpoint paradigm. Transportation Research Part C, 36, pp. 352–366, 2013. [Crossref] [5] Pariota, L., Bifulco, G.N., Galante, F., Montella, A. & Brackstone, M., Longitudinalcontrol behaviour: Analysis and modelling based on experimental surveys in Italyand the UK. Accident Analysis & Prevention, 89, pp. 74–87, 2016. [Crossref] [6] Cascetta, E., Cartenì, A., Pagliara, F. & Montanino, M., A new look at planning and designingtransportation systems: A decision-making model based on cognitive rationality,stakeholder engagement and quantitative methods. Transport Policy, 38, pp. 27–39,2015. [Crossref] [7] Cascetta, E., Cartenì, A. & Montanino, M., A behavioral model of accessibility basedon the number of available opportunities. Journal of Transport Geography, 51, pp. 45–58, 2016.
[8] D'Acierno, L., Gallo, M., Montella, B. & Placido, A., The definition of a model frameworkfor managing rail systems in the case of breakdowns. Proceedings of the 16thIEEE Conference on Intelligent Transportation Systems (ITSC), The Hague, The Netherlands,pp. 1059–1064, 2013. [Crossref] [9] Gallo, M., Simonelli, F., De Luca, G. & De Martinis, V., Estimating the effects of energy-efficient driving profiles on railway consumption. Proceedings of the 15th IEEEInternational Conference on Environment and Electrical Engineering (EEEIC), Rome,Italy, pp. 1059–1064, 2015. [Crossref] [10] D'Acierno, L., Placido, A., Botte, M. & Montella, B., A methodological approach formanaging rail disruptions with different perspectives. International Journal of MathematicalModels and Methods in Applied Sciences, 10, pp. 80–86, 2016.
[11] Cascetta, E., Transportation Systems Analysis: Models and Applications. Springer:New York, 2009.
[12] Smith M.J., The existence, uniqueness and stability of traffic equilibria. TransportationResearch Part B, 13(4), pp. 295–304, 1979. [Crossref] [13] Brog, W. & Ampt, E., State of the art in the collection of travel behaviour data. TravelBehaviour for the 1980s, Special Report 201, National Research Council: Washington,DC, 1982.
[14] Ortuzar, J.de D. & Willumsen, L.G., Modelling Transport, 4th ed., John Wiley andSons: Chichester, UK, 2011.
[15] Domencich, T.A. & McFadden, D., Urban Travel Demand: A Behavioural Analysis.Elsevier: New York, 1975.
[16] Horowitz, J., Identification and diagnosis of specification errors in the multinominallogit model. Transportation Research Part B, 15(5), pp. 345–360, 1981. [Crossref] [17] Manski, C.F. & McFadden, D., Structural Analysis of Discrete Data with EconometricApplications. The MIT Press: Cambridge, MA, 1981.
[18] Ben-Akiva, M. & Lerman, S.R., Discrete Choice Analysis: Theory and Applicationto Travel Demand. The MIT Press: Cambridge, MA, 1985. [Crossref] [19] Ben-Akiva, M. & Morikawa, T., Estimation of switching models from revealed preferenceand stated intention. Transportation Research Part A, 24(6), pp. 485–495, 1990.
[20] Ortuzar, J. de D., Stated preference in travel demand modelling. Proceedings of the 6thWorld Conference on Transportation Research (WCTR), Lyon, France, 1992.
[21] Lo, H.-P. & Chan, C.-P., Simultaneous estimation of an origin–destination matrix andlink choice proportions using traffic counts. Transportation Research Part A, 37(9), pp.771–788, 2003. [Crossref] [22] Cascetta, E., Papola, A., Marzano, V., Simonelli, F. and Vitiello, I., Quasi-dynamic estimationof o–d flows from traffic counts: Formulation, statistical validation and performance analysis on real data. Transportation Research Part B, 55, pp. 171–187, 2013. [Crossref] [23] Lu, C.-C., Zhou, X. & Zhang, K., Dynamic origin–destination demand flow estimationunder congested traffic conditions. Transportation Research Part C, 34, pp. 16–37,2013. [Crossref] [24] Oi, W.Y. & Shuldiner, P.W., An Analysis of Urban Travel Demands. Northwestern UniversityPress: Evanston, IL, 1962.
[25] Wilson, A.G., Urban and Regional Models in Geography and Planning. John Wiley &Sons: London, 1974.
[26] Botte, M., Di Salvo, C., Placido, A., Montella, B. & D'Acierno, L., A NeighbourhoodSearch Algorithm (NSA) for determining optimal intervention strategies in the case ofmetro system failures. International Journal of Transport Development and Integration,1(1), pp. 63–73, 2016.
[27] D'Acierno, L., Gallo, M., Montella, B. & Placido, A., Analysis of the interaction betweentravel demand and rail capacity constraints. WIT Transactions on the Built Environment,128, pp. 197–207, 2012. [Crossref] [28] Ercolani, M., Placido, A., D'Acierno, L. & Montella, B., The use of microsimulationmodels for the planning and management of metro systems. WIT Transactions on theBuilt Environment, 135, pp. 509–521, 2014. [Crossref] [29] Botte, M., Di Salvo, C., Caropreso, C., Montella, B. & D'Acierno, L., Defining economicand environmental feasibility thresholds in the case of rail signalling systemsbased on satellite technology. Proceedings of the 16th IEEE Conference on Environmentand Electrical Engineering (EEEIC), Naples, Italy, 2016. [Crossref]