Javascript is required
Search

Acadlore takes over the publication of IJEPM from 2025 Vol. 10, No. 3. The preceding volumes were published under a CC BY 4.0 license by the previous owner, and displayed here as agreed between Acadlore and the previous owner. ✯ : This issue/volume is not published by Acadlore.

Open Access
Research article

Performance Comparison of Si and GaAs Solar Cell due to Deposition of ZnO and SiO2 Antireflection Coating Layer

Jhilirani Nayak1*,
Priyabrata Pattanaik1,
Dilip Kumar Mishra2
1
Department of Electronics and Communication Engineering, Siksha ‘O’ Anusandhan Deemed to be University, Khandagiri, 751030 Bhubaneswar, India
2
Department of Physics, Siksha ‘O’ Anusandhan Deemed to be University, Khandagiri, 751030 Bhubaneswar, India
International Journal of Energy Production and Management
|
Volume 9, Issue 1, 2024
|
Pages 1-7
Received: 11-14-2023,
Revised: 12-19-2023,
Accepted: 01-14-2024,
Available online: 03-30-2024
View Full Article|Download PDF

Abstract:

This article provides a new approach to the comparison of the performance of low-cost, efficient, and stable silicon and gallium arsenide solar cells. The design convention becomes challenging due to the absorption and current mismatching of the used antireflection coating layer with device sub-layers. The electrical properties of the proposed devices were analyzed in the presence of zinc oxide and silicon dioxide anti-reflection coating (ARC) layer, by adopting COMSOL 5.6 simulation software. These monolithically designed single junction solar cells of distinct materials with various band gaps and diverse spectral characteristics furnish the best efficiency with impressive degradation in reflection losses. The wideband antireflection layers are used to reduce reflection losses by reducing the refractive index towards the top surface of the photovoltaic cells. Simulation results provide the optimized values of the parameters of the devices within the range of 200-1200nm wavelength. At a thickness of 0.5µm zinc oxide, silicon solar cell and gallium arsenide solar cell provides efficiency of 16.85% and 10.69% respectively. Deposition of silicon dioxide on zinc oxide enhances the power efficiency to 16.89% and 10.7% respectively. A set of figures including maximum voltage, maximum current, conversion efficiency, short circuit current, and fill factor are presented. This article represents the use of zinc oxide and silicon dioxide antireflection layers with their optimum thickness can provide a better improvement in the device's performance.

Keywords: Anti-reflection Collating layer, Current mismatch, Efficiency, Reflectivity, Band gap and fill factor, COMSOL 5.6 simulation, Zinc oxide, Silicon dioxide, Photovoltaic cells


Cite this:
APA Style
IEEE Style
BibTex Style
MLA Style
Chicago Style
GB-T-7714-2015
Nayak, J., Pattanaik, P., & Mishra, D. K. (2024). Performance Comparison of Si and GaAs Solar Cell due to Deposition of ZnO and SiO2 Antireflection Coating Layer. Int. J. Energy Prod. Manag., 9(1), 1-7. https://doi.org/10.18280/ijepm.090101
J. Nayak, P. Pattanaik, and D. K. Mishra, "Performance Comparison of Si and GaAs Solar Cell due to Deposition of ZnO and SiO2 Antireflection Coating Layer," Int. J. Energy Prod. Manag., vol. 9, no. 1, pp. 1-7, 2024. https://doi.org/10.18280/ijepm.090101
@research-article{Nayak2024PerformanceCO,
title={Performance Comparison of Si and GaAs Solar Cell due to Deposition of ZnO and SiO2 Antireflection Coating Layer},
author={Jhilirani Nayak and Priyabrata Pattanaik and Dilip Kumar Mishra},
journal={International Journal of Energy Production and Management},
year={2024},
page={1-7},
doi={https://doi.org/10.18280/ijepm.090101}
}
Jhilirani Nayak, et al. "Performance Comparison of Si and GaAs Solar Cell due to Deposition of ZnO and SiO2 Antireflection Coating Layer." International Journal of Energy Production and Management, v 9, pp 1-7. doi: https://doi.org/10.18280/ijepm.090101
Jhilirani Nayak, Priyabrata Pattanaik and Dilip Kumar Mishra. "Performance Comparison of Si and GaAs Solar Cell due to Deposition of ZnO and SiO2 Antireflection Coating Layer." International Journal of Energy Production and Management, 9, (2024): 1-7. doi: https://doi.org/10.18280/ijepm.090101
NAYAK J, PATTANAIK P, MISHRA D K. Performance Comparison of Si and GaAs Solar Cell due to Deposition of ZnO and SiO2 Antireflection Coating Layer[J]. International Journal of Energy Production and Management, 2024, 9(1): 1-7. https://doi.org/10.18280/ijepm.090101