[1] European Commission, Science for Environment Policy In-depth-report: Indicators for sustainable cities. In-depth Report 12, Vol. 2015, No. 12, p. 24, 2018.
[2] Bian, Y., Dong, L., Liu, Z. & Zhang, L., A sectoral eco-efficiency analysis on urban- industrial symbiosis. Sustainability, 12(9), pp. 1–19, 2020. https://doi.org/10.3390/ su12093650
[3] UNIDO, Eco-industrial Parks - Achievements and Key Insights from the Global RECP programme, 2019.
[4] Chertow, M., Gordon, M., Hirsch, P. & Ramaswami, A., Industrial symbiosis potential and urban infrastructure capacity in Mysuru, India. Environmental Research Letters, 14(7), 075003, 2019. [Crossref] [5] Lolli, F. et al., Waste treatment: an environmental, economic and social analysis with a new group fuzzy PROMETHEE approach. Clean Technologies and Environmental Policy, 18(5), pp. 1317–1332, 2016. [Crossref] [6] Dong, L., Liang, H., Zhang, L., Liu, Z., Gao, Z. & Hu, M., Highlighting regional eco-industrial development: Life cycle benefits of an urban industrial symbiosis and implications in China. Ecological Modelling, 361, pp. 164–176, 2017. https://doi. org/10.1016/j.ecolmodel.2017.07.032
[7] Dong, H., Ohnishi, S., Fujita, T., Geng, Y., Fujii, M. & Dong, L., Achieving carbon emission reduction through industrial & urban symbiosis: A case of Kawasaki. Energy, 64, pp. 277–286, 2014. [Crossref] [8] Sun, L., et al., Energy-saving and carbon emission reduction e ff ect of urban-industrial symbiosis implementation with feasibility analysis in the city. Technological Forecasting and Social Change, 151, 119853, 2020. [Crossref] [9] Fujii, M., et al., Possibility of developing low-carbon industries through urban symbio- sis in Asian cities. Journal of Cleaner Production, 114, pp. 376–386, 2016. https://doi. org/10.1016/j.jclepro.2015.04.027
[10] Ohnishi, S., Dong, H., Geng, Y., Fujii, M. & Fujita, T., A comprehensive evaluation on industrial & urban symbiosis by combining MFA, carbon footprint and emergy meth- ods—Case of Kawasaki, Japan. Ecological Indicators, 73, pp. 315–324, 2017. https:// doi.org/10.1016/j.ecolind.2016.10.016
[11] Lu, C., Wang, S., Wang, K., Gao, Y. & Zhang, R., Uncovering the benefits of integrating industrial symbiosis and urban symbiosis targeting a resource-dependent city: A case study of Yongcheng, China. Journal of Cleaner Production, 255, 120210, 2020. https:// doi.org/10.1016/j.jclepro.2020.120210
[12] Zhang, X., et al., A review of urban energy systems at building cluster level incorpo- rating renewable-energy-source (RES) envelope solutions. Applied Energy, 230, pp. 1034–1056, 2018. [Crossref] [13] Manfren, M., Caputo, P. & Costa, G., Paradigm shift in urban energy systems through distributed generation: Methods and models. Applied Energy, 88(4), pp. 1032–1048, 2011. [Crossref] [14] Butturi, M.A., Lolli, F., Sellitto, M.A., Balugani, E., Gamberini, R. & Rimini, B., Renewable energy in eco-industrial parks and urban-industrial symbiosis: A literature review and a conceptual synthesis. Applied Energy, 255, 113825, 2019. https://doi. org/10.1016/j.apenergy.2019.113825
[15] García-guaita, F., González-garcía, S., Villanueva-rey, P., Teresa, M. and Feijoo, G., Integrating urban metabolism , material flow analysis and life cycle assessment in the environmental evaluation of Santiago de Compostela. Sustainable Cities and Society, 40, pp. 569–580, 2018. [Crossref] [16] Van Berkel, R., Fujita, T., Hashimoto, S. & Geng, Y., Industrial and urban symbiosis in Japan: Analysis of the Eco-Town program 1997–2006. Journal of Environmental Man- agement, 90(3), pp. 1544–1556, 2009. [Crossref] [17] Marchi, B., Zanoni, S. & Zavanella, L.E., Symbiosis between industrial systems, utili- ties and public service facilities for boosting energy and resource efficiency. Energy Procedia, 128, pp. 544–550, 2017. [Crossref] [18] Dong, L., Gu, F., Fujita, T., Hayashi, Y. & Gao, J., Uncovering opportunity of low-car- bon city promotion with industrial system innovation: Case study on industrial symbio- sis projects in China. Energy Policy, 65, pp. 388–397, 2014. enpol.2013.10.019 [Crossref] [19] Van Berkel, R., Fujita, T., Hashimoto, S. and Fujii, M., Quantitative assessment of urban and industrial symbiosis in Kawasaki, Japan. Environmental Science and Technology, 43(5), pp. 1271–1281, 2009. [Crossref] [20] Dong, L., et al., Environmental and economic gains of industrial symbiosis for Chi- nese iron/steel industry: Kawasaki’s experience and practice in Liuzhou and Jinan. Journal of Cleaner Production, 59, pp. 226–238, 2013. jclepro.2013.06.048 [Crossref] [21] Fang, K., Dong, L., Ren, J., Zhang, Q., Han, L. and Fu, H., Carbon footprints of urban transition: Tracking circular economy promotions in Guiyang, China. Ecological Mod- elling, 365, pp. 30–44, 2017. [Crossref] [22] Albino, V., Fraccascia, L. & Savino, T., Industrial symbiosis for a sustainable city: Tech- nical, economical and organizational issues. Procedia Engineering, 118, pp. 950–957, 2015. [Crossref] [23] Sokka, L., Pakarinen, S. and Melanen, M., Industrial symbiosis contributing to more sustainable energy use - An example from the forest industry in Kymenlaakso, Finland. Journal of Cleaner Production, 19(4), pp. 285–293, 2011. jclepro.2009.08.014 [Crossref] [24] Togawa, T., Fujita, T., Dong, L., Fujii, M. & Ooba, M., Feasibility assessment of the use of power plant-sourced waste heat for plant factory heating considering spatial configu- ration. Journal of Cleaner Production, 81, pp. 60–69, 2014. jclepro.2014.06.010 [Crossref] [25] Fang, H., Xia, J., Zhu, K., Su, Y. & Jiang, Y., Industrial waste heat utilization for low temperature district heating. Energy Policy, 62, pp. 236–246, 2013. https://doi. org/10.1016/j.enpol.2013.06.104
[26] Kim, H.W., Dong, L., Choi, A.E.S., Fujii, M., Fujita, T. & Park, H.S., Co-benefit poten- tial of industrial and urban symbiosis using waste heat from industrial park in Ulsan, Korea. Resources, Conservation and Recycling, 135, pp. 225–234, 2018. https://doi. org/10.1016/j.resconrec.2017.09.027
[27] Karner, K., Theissing, M. & Kienberger, T., Modeling of energy efficiency increase of urban areas through synergies with industries. Energy, 136, pp. 201–209, 2017. https:// doi.org/10.1016/j.energy.2015.12.139
[28] Karner, K., Theissing, M. & Kienberger, T., Energy efficiency for industries through synergies with urban areas. Journal of Cleaner Production, 119, pp. 167–177, 2016. [Crossref] [29] Fraccascia, L., Industrial symbiosis and urban areas: A systematic literature review and future research directions. Procedia Environmental Science, Engineering and Manage- ment, 5(2), pp. 73–83, 2018.
[30] Holgado, M., Benedetti, M., Evans, S. & Introna, V., Contextualisation in industrial energy symbiosis: Design process for a knowledge repository. XXI Summer School “Francesco Turco”, pp. 139–144, 2016.
[31] Dong, L., et al., Towards preventative eco-industrial development: An industrial and urban symbiosis case in one typical industrial city in China. Journal of Cleaner Produc- tion, 114, pp. 387–400, 2016. [Crossref] [32] Afshari, H., Jaber, M.Y. & Searcy, C., Extending industrial symbiosis to residential buildings: A mathematical model and case study. Journal of Cleaner Production, 183, pp. 370–379, 2018. [Crossref] [33] Maes, T., et al., Energy management on industrial parks in Flanders. Renewable and Sustainable Energy Reviews, 15(4), pp. 1988–2005, 2011. [Crossref] [34] UNIDO, Industrial Development Report 2018. Demand for Manufacturing: Driving Inclusive and Sustainable Industrial Development, Vienna, 2017.
[35] Lund, H., Alberg, P., Connolly, D. & Vad, B., Smart energy and smart energy systems. Energy, 137, pp. 556–565, 2017. [Crossref] [36] Yang, H., Xiong, T., Qiu, J., Qiu, D. and Dong, Z.Y., Optimal operation of DES/CCHP based regional multi-energy prosumer with demand response. Applied Energy, 167, pp. 353–365, 2016. [Crossref] [37] Wang, Y., Ren, H., Dong, L., Park, H.-S., Zhang, Y. and Xu, Y., Smart solutions shape for sustainable low-carbon future: A review on smart cities and industrial parks in China. Technological Forecasting Social and Change, 144, pp. 103–117, 2019. https:// doi.org/10.1016/j.techfore.2019.04.014
[38] Fraccascia, L., The impact of technical and economic disruptions in industrial symbio- sis relationships: An enterprise input-output approach. International Journal of Pro- duction Economics, 213, pp. 161–174, 2019. [Crossref] [39] Yu, F., Han, F. and Cui, Z., Reducing carbon emissions through industrial symbiosis: A case study of a large enterprise group in China. Journal of Cleaner Production, 103, pp. 811–818, 2015. [Crossref] [40] Tao, Y., Evans, S., Wen, Z. & Ma, M., The influence of policy on industrial symbiosis from the Firm’s perspective: A framework. Journal of Cleaner Production, 213, pp. 1172–1187, 2019. [Crossref] [41] European Parliament and Council, Directive 2010/31/EU, Official Journal of the Euro- pean Union, 2010.
[42] Amaral, A.R., Rodrigues, E., Rodrigues Gaspar, A. & Gomes, Á., Review on perfor- mance aspects of nearly zero-energy districts. Sustainable Cities and Society, 43, pp. 406–420, 2018. [Crossref] [43] Lombardi, P., Sokolnikova, P., Arendarski, B., Franke, R., Hoepfner, A. & Komarnicki, P., Multi-criteria planning tool for a net zero energy village. Proc. - 2018 IEEE Int. Conf. on Environment and Electrical Engineering, 2018 IEEE Industrial and Commer- cial Power Systems Europe, pp. 1–6, 2018.
[44] Allegrini, J., Orehounig, K., Mavromatidis, G., Ruesch, F., Dorer, V. & Evins, R., A review of modelling approaches and tools for the simulation of district-scale energy sys- tems. Renewable and Sustainable Energy Reviews, 52, pp. 1391–1404, 2015. https:// doi.org/10.1016/j.rser.2015.07.123
[45] Lenhart, J., Van Vliet, B. & Mol, A.P.J., New roles for local authorities in a time of cli- mate change: The Rotterdam Energy Approach and Planning as a case of urban symbio- sis. Journal of Cleaner Production, 107, pp. 593–601, 2015. jclepro.2015.05.026 [Crossref] [46] Chan, D., Cameron, M. & Yoon, Y., Key success factors for global application of micro energy grid model. Sustainable Cities and Society, 28, pp. 209–224, 2017. https://doi. org/10.1016/j.scs.2016.08.030
[47] Neves, A., Godina, R., Azevedo, S.G. & Matias, J.C.O., Carbon dioxide recovery through industrial and urban symbiosis. ICITM 2020, 9th Int. Conf. on Industrial Tech- nology and Management, pp. 171–175, 2020.
[48] Kurdve, M., Jönsson, C. & Granzell, A.S., Development of the urban and industrial symbiosis in western Mälardalen. Procedia CIRP, 73, pp. 96–101, 2018. [Crossref] [49] Baumann, M., Weil, M., Peters, J.F., Chibeles-Martins, N. & Moniz, A.B., A review of multi-criteria decision making approaches for evaluating energy storage systems for grid applications,” Renewable and Sustainable Energy Reviews, 107, pp. 516–534, 2019. [Crossref] [50] Butturi, B., Lolli, M.A., Balugani, F., Gamberini, E. & Rimini, R., Distributed renew- able energy generation: A critical review based on the three pillars of sustainability. Proc. Summer School “Francisco Turco”, Sept. 2018, pp. 179–185, 2018.
[51] Afshari, H., Tosarkani, B.M., Jaber, M.Y. & Searcy, C., The effect of environmental and social value objectives on optimal design in industrial energy symbiosis: A multi-objec- tive approach. Resources, Conservation and Recycling, 158, 104825, 2020. https://doi. org/10.1016/j.resconrec.2020.104825
[52] Liew, P.Y., et al., Total site heat integration planning and design for industrial, urban and renewable systems. Renewable and Sustainable Energy Reviews, 68, pp. 964–985, 2017. [Crossref] [53] Reuter, M., Patel, M.K., Eichhammer, W., Lapillonne, B. & Pollier, K., A comprehen- sive indicator set for measuring multiple benefits of energy efficiency. Energy Policy, 139, 111284, 2020. [Crossref] [54] Sierra, L.A., Yepes, V. & Pellicer, E., A review of multi-criteria assessment of the social sustainability of infrastructures. Journal of Cleaner Production, 187, pp. 496–513, 2018. [Crossref] [55] Timmerman, J., Vandevelde, L. & Van Eetvelde, G., Towards low carbon business park energy systems: Classification of techno-economic energy models. Energy, 75, pp. 68–80, 2014. [Crossref]