[1] Directive 2010/31/EU of the European Parliament and of The Council of 19 may 2010 on the energy performance of buildings.
[2] Ministerio de Fomento. (2013, 10 de septiembre). Orden FOM/1635/2013, de 10 de sep- tiembre, por la que se actualiza el Documento Básico DB-HE «Ahorro de Energía», del Código Técnico de la Edificación. Boletín Oficial del Estado, nº219, pp. 67137–67209.
[3] Ministerio de Vivienda. (2006, 28 de marzo). Real Decreto 314/2006 de 17 de marzo. Código Técnico de la Edificación. Boletín Oficial del Estado, nº74, pp. 11816–11831.
[4] The Government of Spain. Royal Decree 314/2006. Approving the Spanish Technical Building Code CTE-DB-HE-1; The Government of Spain: Madrid, Spain, 2013.
[5] Fernández, A.E., Iribarren, V.E. & Iribarren, F.E., Energy efficiency of ventilated façades: Residential buildings, Alicante, Spain. WIT Transactions on the Built Environment, vol. 171, WIT Press: Southampton and Boston, pp. 41–52, 2017. [Crossref] [6] Abhat, A., Low temperature latent heat thermal energy storage: heat storage materials. Solar Energy, 30, pp. 313–332, 1983. [Crossref] [7] de Gracia, A., Navarro, L., Castell, A., Ruiz-Pardo, A., Álvarez, S. & Cabeza, L.F., Experimental study of a ventilated facade with PCM during winter period. Energy and Buildings, 58, pp. 324–332, 2013. [Crossref] [8] de Gracia, A., Navarro, L., Castell, A., Ruiz-Pardo, A., Álvarez, S. & Cabeza, L.F., Solar absorption in a ventilated facade with PCM. Experimental results. Energy Proce- dia, 30, pp. 986–994, 2012. [Crossref] [9] Echarri, V., Espinosa, A. & Rizo, C., Thermal transmission through Existing build- ing enclosures: Destructive monitoring in Intermediate Layers versus Non-Destructive Monitoring with sensor son surfaces, Sensors, 17, 2848, 2017. https://doi.org/10.3390/ s17122848
[10] Pomponi, F., Piroozfar, P.A.E., Southall, R., Ashton, P. & Farr, E.R.P., Energy performance of Double-Skin Façades in temperate climates: A systematic review and meta-analysis. Renewable and Sustainable Energy Reviews, 54, pp. 1525–1536, 2016. [Crossref] [11] Hasan, A. & Sayigh, A.A., Some fatty acids as phase-change thermal energy storage materials. Renewable Energy, 4(1), pp. 69–76, 1994. 1481(94)90066-3 [Crossref] [12] Kuznik, F., Virgone, j. & Noel, j., Optimization of a phase change material wall- board, Applied Thermal Engineering, 28 (11–12), pp. 1291–1298, 2008. https://doi. org/10.1016/j.applthermaleng.2007.10.012
[13] Suárez, R., & Fragoso, j., Estrategias pasivas de optimización energética de la vivienda social en clima mediterráneo. Informes de la Construcción, 68 (541), pp. 1–12, 2016. [Crossref] [14] Bienvenido-Huertas, D., Bermúdez, j., Moyano, j. & Marín, D., Comparison of quantitative IRT to estimate U-value using different approximations of ECHTC in multi-leaf walls, Energy & Buildings, 184, pp. 99–113, 2019. enbuild.2018.11.028 [Crossref] [15] Código Técnico de la Edificación (CTE), Reglamento de Instalaciones Térmicas en los Edificios (RITE), ITC, 02.2.1.
[16] Iribarren, V.E., Garrigós, A.G. & Fernández, A.E., Energy rehabilitation of ventilated façades using phenolic panelling at the university of Alicante museum: Thermal char- acterisation and energy demand. WIT Transactions on the Built Environment, vol. 171, WIT Press: Southampton and Boston, pp. 3–15, 2017. https://doi.org/10.2495/ STR170011
[17] Diarce, G. et al. Ventilated active façades with PCM. Applied Energy, 109, pp. 530–537, 2013. [Crossref]