Javascript is required
[1] Directive 2010/31/EU of the European Parliament and of The Council of 19 may 2010 on the energy performance of buildings.
[2] Ministerio de Fomento. (2013, 10 de septiembre). Orden FOM/1635/2013, de 10 de sep- tiembre, por la que se actualiza el Documento Básico DB-HE «Ahorro de Energía», del Código Técnico de la Edificación. Boletín Oficial del Estado, nº219, pp. 67137–67209.
[3] Ministerio de Vivienda. (2006, 28 de marzo). Real Decreto 314/2006 de 17 de marzo. Código Técnico de la Edificación. Boletín Oficial del Estado, nº74, pp. 11816–11831.
[4] The Government of Spain. Royal Decree 314/2006. Approving the Spanish Technical Building Code CTE-DB-HE-1; The Government of Spain: Madrid, Spain, 2013.
[5] Fernández, A.E., Iribarren, V.E. & Iribarren, F.E., Energy efficiency of ventilated façades: Residential buildings, Alicante, Spain. WIT Transactions on the Built Environment, vol. 171, WIT Press: Southampton and Boston, pp. 41–52, 2017. [Crossref]
[6] Abhat, A., Low temperature latent heat thermal energy storage: heat storage materials. Solar Energy, 30, pp. 313–332, 1983. [Crossref]
[7] de Gracia, A., Navarro, L., Castell, A., Ruiz-Pardo, A., Álvarez, S. & Cabeza, L.F., Experimental study of a ventilated facade with PCM during winter period. Energy and Buildings, 58, pp. 324–332, 2013. [Crossref]
[8] de Gracia, A., Navarro, L., Castell, A., Ruiz-Pardo, A., Álvarez, S. & Cabeza, L.F., Solar absorption in a ventilated facade with PCM. Experimental results. Energy Proce- dia, 30, pp. 986–994, 2012. [Crossref]
[9] Echarri, V., Espinosa, A. & Rizo, C., Thermal transmission through Existing build- ing enclosures: Destructive monitoring in Intermediate Layers versus Non-Destructive Monitoring with sensor son surfaces, Sensors, 17, 2848, 2017. https://doi.org/10.3390/ s17122848
[10] Pomponi, F., Piroozfar, P.A.E., Southall, R., Ashton, P. & Farr, E.R.P., Energy performance of Double-Skin Façades in temperate climates: A systematic review and meta-analysis. Renewable and Sustainable Energy Reviews, 54, pp. 1525–1536, 2016. [Crossref]
[11] Hasan, A. & Sayigh, A.A., Some fatty acids as phase-change thermal energy storage materials. Renewable Energy, 4(1), pp. 69–76, 1994. 1481(94)90066-3 [Crossref]
[12] Kuznik, F., Virgone, j. & Noel, j., Optimization of a phase change material wall- board, Applied Thermal Engineering, 28 (11–12), pp. 1291–1298, 2008. https://doi. org/10.1016/j.applthermaleng.2007.10.012
[13] Suárez, R., & Fragoso, j., Estrategias pasivas de optimización energética de la vivienda social en clima mediterráneo. Informes de la Construcción, 68 (541), pp. 1–12, 2016. [Crossref]
[14] Bienvenido-Huertas, D., Bermúdez, j., Moyano, j. & Marín, D., Comparison of quantitative IRT to estimate U-value using different approximations of ECHTC in multi-leaf walls, Energy & Buildings, 184, pp. 99–113, 2019. enbuild.2018.11.028 [Crossref]
[15] Código Técnico de la Edificación (CTE), Reglamento de Instalaciones Térmicas en los Edificios (RITE), ITC, 02.2.1.
[16] Iribarren, V.E., Garrigós, A.G. & Fernández, A.E., Energy rehabilitation of ventilated façades using phenolic panelling at the university of Alicante museum: Thermal char- acterisation and energy demand. WIT Transactions on the Built Environment, vol. 171, WIT Press: Southampton and Boston, pp. 3–15, 2017. https://doi.org/10.2495/ STR170011
[17] Diarce, G. et al. Ventilated active façades with PCM. Applied Energy, 109, pp. 530–537, 2013. [Crossref]
Search

Acadlore takes over the publication of IJEPM from 2025 Vol. 10, No. 3. The preceding volumes were published under a CC BY 4.0 license by the previous owner, and displayed here as agreed between Acadlore and the previous owner. ✯ : This issue/volume is not published by Acadlore.

Open Access
Research article

Energy Rehabilitation of Buildings Through Phase Change Materials and Ceramic Ventilated Façades

víctor echarri iribarren1,
josé l. sanjuan palermo2,
francisco j. aldea castelló2,
carlos rizo maestre1
1
Department of Building Construction, University of Alicante, Spain
2
University of Alicante, Spain
International Journal of Energy Production and Management
|
Volume 4, Issue 4, 2019
|
Pages 332-342
Received: N/A,
Revised: N/A,
Accepted: N/A,
Available online: N/A
View Full Article|Download PDF

Abstract:

In recent years, phase change materials (PCMs) have gained major relevance for their ability to take advantage of indoor/outdoor air temperature differences to store energy. This characteristic of PCMs allows to transfer stored energy to periods of energy demand, thus achieving optimum conditions of comfort and notable energy savings. The present study compared the energy consumption of a traditional façade and a ventilated façade to which large format ceramic tiles covered with PCMs were applied. For this purpose, an office building in the city of Alicante was used as a case study. Salt hydrate PCMs were attached to the slabs, and air was allowed to circulate or not circulate through night and day dampers as passive conditioning, accumulating energy. The energy performance of the building was simulated using the Lider-Calener (HULC) energy certification tool in both scenarios. The building’s energy demand was calculated in its current state and with the ventilated façade with ceramic tiles and PCMs. An energy saving of 5% was obtained.

Keywords: Ceramic, Energy rehabilitation, Phase change materials (PCM), Ventilated façades

1. Introduction

2. Ventilated Façade

3. Phase Change Materials (PCM)

4. Case Study

5. Analysis and Results of the Proposed Solution

6. Conclusions

References
[1] Directive 2010/31/EU of the European Parliament and of The Council of 19 may 2010 on the energy performance of buildings.
[2] Ministerio de Fomento. (2013, 10 de septiembre). Orden FOM/1635/2013, de 10 de sep- tiembre, por la que se actualiza el Documento Básico DB-HE «Ahorro de Energía», del Código Técnico de la Edificación. Boletín Oficial del Estado, nº219, pp. 67137–67209.
[3] Ministerio de Vivienda. (2006, 28 de marzo). Real Decreto 314/2006 de 17 de marzo. Código Técnico de la Edificación. Boletín Oficial del Estado, nº74, pp. 11816–11831.
[4] The Government of Spain. Royal Decree 314/2006. Approving the Spanish Technical Building Code CTE-DB-HE-1; The Government of Spain: Madrid, Spain, 2013.
[5] Fernández, A.E., Iribarren, V.E. & Iribarren, F.E., Energy efficiency of ventilated façades: Residential buildings, Alicante, Spain. WIT Transactions on the Built Environment, vol. 171, WIT Press: Southampton and Boston, pp. 41–52, 2017. [Crossref]
[6] Abhat, A., Low temperature latent heat thermal energy storage: heat storage materials. Solar Energy, 30, pp. 313–332, 1983. [Crossref]
[7] de Gracia, A., Navarro, L., Castell, A., Ruiz-Pardo, A., Álvarez, S. & Cabeza, L.F., Experimental study of a ventilated facade with PCM during winter period. Energy and Buildings, 58, pp. 324–332, 2013. [Crossref]
[8] de Gracia, A., Navarro, L., Castell, A., Ruiz-Pardo, A., Álvarez, S. & Cabeza, L.F., Solar absorption in a ventilated facade with PCM. Experimental results. Energy Proce- dia, 30, pp. 986–994, 2012. [Crossref]
[9] Echarri, V., Espinosa, A. & Rizo, C., Thermal transmission through Existing build- ing enclosures: Destructive monitoring in Intermediate Layers versus Non-Destructive Monitoring with sensor son surfaces, Sensors, 17, 2848, 2017. https://doi.org/10.3390/ s17122848
[10] Pomponi, F., Piroozfar, P.A.E., Southall, R., Ashton, P. & Farr, E.R.P., Energy performance of Double-Skin Façades in temperate climates: A systematic review and meta-analysis. Renewable and Sustainable Energy Reviews, 54, pp. 1525–1536, 2016. [Crossref]
[11] Hasan, A. & Sayigh, A.A., Some fatty acids as phase-change thermal energy storage materials. Renewable Energy, 4(1), pp. 69–76, 1994. 1481(94)90066-3 [Crossref]
[12] Kuznik, F., Virgone, j. & Noel, j., Optimization of a phase change material wall- board, Applied Thermal Engineering, 28 (11–12), pp. 1291–1298, 2008. https://doi. org/10.1016/j.applthermaleng.2007.10.012
[13] Suárez, R., & Fragoso, j., Estrategias pasivas de optimización energética de la vivienda social en clima mediterráneo. Informes de la Construcción, 68 (541), pp. 1–12, 2016. [Crossref]
[14] Bienvenido-Huertas, D., Bermúdez, j., Moyano, j. & Marín, D., Comparison of quantitative IRT to estimate U-value using different approximations of ECHTC in multi-leaf walls, Energy & Buildings, 184, pp. 99–113, 2019. enbuild.2018.11.028 [Crossref]
[15] Código Técnico de la Edificación (CTE), Reglamento de Instalaciones Térmicas en los Edificios (RITE), ITC, 02.2.1.
[16] Iribarren, V.E., Garrigós, A.G. & Fernández, A.E., Energy rehabilitation of ventilated façades using phenolic panelling at the university of Alicante museum: Thermal char- acterisation and energy demand. WIT Transactions on the Built Environment, vol. 171, WIT Press: Southampton and Boston, pp. 3–15, 2017. https://doi.org/10.2495/ STR170011
[17] Diarce, G. et al. Ventilated active façades with PCM. Applied Energy, 109, pp. 530–537, 2013. [Crossref]

Cite this:
APA Style
IEEE Style
BibTex Style
MLA Style
Chicago Style
GB-T-7714-2015
Iribarren, V. E., Palermo, J. L. S., Castelló, F. J. A., & Maestre, C. R. (2019). Energy Rehabilitation of Buildings Through Phase Change Materials and Ceramic Ventilated Façades. Int. J. Energy Prod. Manag., 4(4), 332-342. https://doi.org/10.2495/EQ-V4-N4-332-342
V. E. Iribarren, J. L. S. Palermo, F. J. A. Castelló, and C. R. Maestre, "Energy Rehabilitation of Buildings Through Phase Change Materials and Ceramic Ventilated Façades," Int. J. Energy Prod. Manag., vol. 4, no. 4, pp. 332-342, 2019. https://doi.org/10.2495/EQ-V4-N4-332-342
@research-article{Iribarren2019EnergyRO,
title={Energy Rehabilitation of Buildings Through Phase Change Materials and Ceramic Ventilated Façades},
author={VíCtor Echarri Iribarren and José L. Sanjuan Palermo and Francisco J. Aldea Castelló and Carlos Rizo Maestre},
journal={International Journal of Energy Production and Management},
year={2019},
page={332-342},
doi={https://doi.org/10.2495/EQ-V4-N4-332-342}
}
VíCtor Echarri Iribarren, et al. "Energy Rehabilitation of Buildings Through Phase Change Materials and Ceramic Ventilated Façades." International Journal of Energy Production and Management, v 4, pp 332-342. doi: https://doi.org/10.2495/EQ-V4-N4-332-342
VíCtor Echarri Iribarren, José L. Sanjuan Palermo, Francisco J. Aldea Castelló and Carlos Rizo Maestre. "Energy Rehabilitation of Buildings Through Phase Change Materials and Ceramic Ventilated Façades." International Journal of Energy Production and Management, 4, (2019): 332-342. doi: https://doi.org/10.2495/EQ-V4-N4-332-342
Iribarren V. E., Palermo J. L. S., Castelló F. J. A., et al. Energy Rehabilitation of Buildings Through Phase Change Materials and Ceramic Ventilated Façades[J]. International Journal of Energy Production and Management, 2019, 4(4): 332-342. https://doi.org/10.2495/EQ-V4-N4-332-342