[1] Babayemi, J.O. & Dauda, k.T., Evaluation of solid waste generation, categories and disposal options in developing Countries: A case study of Nigeria. Journal of Applied Science and Environmental Management, 13(3), pp. 83–88, 2009.
[2] Amoo, O.m. & fagbenle, r.l., renewable municipal solid waste pathways for energy generation and sustainable development in the Nigerian context. International Journal of Energy and Environmental Engineering, 4(1), p. 42, 2013.
[3] Dri, m., canfora, P., Antonopoulos, I.S. & gaudillat, P., Best Environmental Management Practice for the Waste Management Sector, jrc Science for Policy report, Eur 29136 EN, Publications Office of the European union, luxembourg, 2018, ISbN 978-92-79- 80361-1, , jrc111059 [Crossref] [4] Abu-Qudais, m. & Abu-Qdais, h.A., Energy content of municipal solid waste in jordan and Its potential utilization. Energy Conversion and Management, 41(9), pp. 983–991, 2000. [Crossref] [5] johri, r., rajeshwari, K.V. & mullick, A.N., Technological option for municipal solid waste management. Wealth from Waste: Trends and Technologies, 3rd edn., New Delhi: The Energy and research Institute, p. 342–78, 2011.
[6] Suberu, m.Y., mokhtar, A.S. & bashir, N.N., renewable power generation opportunity from municipal solid waste: A case study of lagos metropolis (Nigeria). Journal of Energy Technologies and Policy, 2(2), 2012.
[7] Tsai, W.T. & Kuo, K.c., An analysis of power generation from (mSW) incineration plants in Taiwan. Energy, 35(12), pp. 4824–4830, 2010.
[8] Amber, I., Kulla, D.m. & gukop, N., generation, characteristics and energy potential of solid municipal solid waste in Nigeria. Journal of Energy in Southern Africa, 23(3), pp. 47–51, 2012.
[9] Kumar j.S., Subbaiah K.V., & Prasada rao P.V.V., Waste to Energy. A case study of Eluru city, Andhra Pradesh, India. International Journal of Environmental Science, 1(2), pp. 151–162, 2010.
[10] Sivapalan, K., muhd, N.m.Y., Sopian, K., Samsuddin, A.h. & rahman, r.A., modeling the heating value of municipal Solid Waste. Fuel, 82, pp. 1119–1125, 2003. https://doi. org/10.1016/S0016-2361(03) 00009-7
[11] Kuleape, r., cobbinah, S.j., Dampare, S.b., Duwiejuah, A.b., Amoako, E.E., & Asare, W., Assessment of Energy recovery potential of solid waste generated in Akosombo, ghana, African. Environmental. Science & Technology, 8(5), pp. 297–308, 2014.
[12] Aderoju, O.m., Dias, g. A. & gonçalves, A., A gIS-based analysis for sanitary landfill sites in Abuja, Nigeria. Environment, Development and Sustainability, 2018. https://doi. org/ 10.1007/s10668-018-0206-z
[13] AEPb., The Abuja Environmental Protection board Annual report, 2015.
[14] Tan, S.T., ho, W.S., hashim, h., lee, c.T., Taib, m.r. & ho, c.S., Energy, Economic and Environment (3E) Analysis of Waste to Energy (WTE) Strategies for municipal Solid Waste (mSW) management in malaysia. Journal for Energy Conversion and Man- agement, 102, pp. 111–120, 2015. [Crossref] [15] Themelis, N.j., An Overview of the global Waste –to-Energy Industry. Waste Management World, pp. 40–47, 2003.
[16] he, c., giannis, A., & Wang, j., conversion of sewage sludge to clean solid fuel using hydrothermal carbonzation: hydrochar fuel characteristics and combustion behavior. Applied Energy, 111, pp. 257–266, 2013. ergy.2013.04.084 [Crossref] [17] DEfrA., Incineration of municipal Solid Waste; Department for Environment, food and rural Affairs. 2013. Online, http://defra.gov.uk
[18] hazardous Waste resource center., 2000. hazardous Waste Incineration: Advanced Technology to Protect the Environment. Environmental Technology center, 2000. Online; http://etc.org/technologicalandenvironmentalissues/treatmenttechnologies/ incineration, (accessed 5 june 2018).
[19] NPc, National Population commission Nigeria, 2012. Available online on: http://popu- lation.gov.ng (accessed 10 August 18).
[20] Aderoju, O.m. & Dias, A.g., Waste to energy as a complementary energy source in Abuja, Nigeria. WASTES: Solutions, Treatments and Opportunities, Published by Taylors and francis group, london, pp. 63–68, 2017. ISbN 978-1-138-19669-8
[21] ASTm D 5231-92 (reapproved 2016): Standard Test methods for Determination of the composition of unprocessed municipal Waste; ASTm International, 6p, 2016.
Available online at: http://astm.org/standards/D5231
[22] Dong, c., jin, b. & li, D., Predicting the heating value of mSW with a feed forward neutral network. Waste Management, 23, pp 103–106, 2003. https://doi.org/10.1016/ s0956-053x(02)00162-9
[23] Tchobanoglous g., Theisen h. & Eliassen, r., Solid Wastes: Engineering Principles and Management Issues, New York, NY: mcgraw-hill, 1977.
[24] Otama, S., mori, Y., Terazono, A., Aso, T. & Sameshima, r., Estimation of energy
recovery and reduction of cO2 emissions in municipal solid waste power generation.
Resources Conservation and Recycling, 20(2), pp. 95–117, 1997.
[25] Tchobanoglous, g., Theisen, h. & Vigil, S.A., Integrated Solid Waste management: engineering principles and management issues, mcgraw-hill Inc.: New York, 1993.
[26] franjo, c.f., ledo, j.P., rodriguez, Anon. j.S. & Nunez l., calorific value of municipal solid waste. Environmental Technology, 13(11), pp. 1085–1089,1992. https://doi. org/10.1080/09593339209385246
[27] Prasada rao, P.V., Venkata, K.S., Sudhir, j.K., Waste to energy: A case study of Eluru, A.P, India. International Journal of Environmental Science and Development, 1(2), pp. 151–162, 2010.
[28] Tsunatu, D.Y., Tickson, T.S., San, K.D. & Namo, j.m., municipal solid waste as alternative source of energy generation: A case study of jalingo metropolis, Taraba State, Nigeria. International Journal of Engineering and Technology, 5(3), pp. 185–193, 2015. ISSN: 2049–3444
[29] IEA., Biomass for Power Generation and CHP. IEA Energy Technology Essential, ETE03, pp 1–4, 2007.