[1] Castaldi, M., van Deventer, J., Lavoie, J.M., Legrand, J., Nzihou, A., Pontikes, Y., Py, X., Vandecasteele, C., Vasudevan, P.T. & Verstraete, W., Progress and prospects in the field of biomass and waste to energy and added-value materials. Waste and Biomass Valorization, 8(6), pp. 1875–1884, 2017. [Crossref] [2] Balat, M. & Balat, H., Progress in biodiesel proceedings. Applied Energy, 87, pp. 1815–1835, 2010. [Crossref] [3] Dorado, M.P., Ballesteros, E., Arnal, J.M. & Lopez, F.Z., Exhaust emissions from a diesel engine fuelled with transesterified waste olive oil. Fuel, 82(11), pp. 1311–1315, 2003. [Crossref] [4] Lin, C.Y., Lin, H.A. & Hung, L.B., Fuel structure and properties of biodiesel produced by the peroxidation process. Fuel, 859(12–13), pp. 1743–1749, 2006. [Crossref] [5] Bankovic-llic, I.B., Stamenkovic, O.B. & Veljkovic, V.B., Biodiesel production from non-edible plant oils. Renewable and Sustainable Energy Reviews, 16(6), pp. 3621–3647, 2012. [Crossref] [6] Bankovic-llic, I.B., Stojkovic, I.J., Stamenkovic, O.S., Veljkovic, V.B. & Hung, Y.T., Waste animal fats as feedstocks for biodiesel production. Renewable and Sustainable Energy Reviews, 32, pp. 238–254, 2014. [Crossref] [7] Atadashi, I.M., Aroua, M.K., Aziz, A.R.A. & Sulaiman, N.M.N., The effects of catalysts in biodiesel production: a review. Journal of Industrial and Engineering Chemistry,19(1), pp. 14–26, 2013. [Crossref] [8] Reddy, C.R.V., Oshel, R. & Verkade, J.G., Room-temperature conversion of soyabean oil and poultry fat to biodiesel catalysed by nanocrystalline calcium oxides. Energy Fuels, 20(6), pp. 1310–1314, 2006. [Crossref] [9] Toda, M., Takagaki, A., Okamura, M., Kondo, J.N., Hayashi, S., Domen, K. & Hara, M., Green chemistry: biodiesel made with sugar catalyst. Nature, 438(7065), pp. 178–178, 2005. [Crossref] [10] Budarin, V., Clark, J.H., Hardy, J.J., Luque, R., Milkowski, K., Tavener, S.J. & Wilson, A.J., Starbons: new starch-derived mesoporous carbonaceous materials with tunable properties. Angewandte Chemie, 118(23), pp. 3866–3870, 2006. [Crossref] [11] Budarin, V.L., Clark, J.H., Luque, R., Macquarrie, D.J., Koutinas, A. & Webb, C., Tunable mesoporous materials optimized for aqueous phase esterification. Green Chemistry, 9(9), pp. 992–995, 2007. [Crossref] [12] Kitano, M., Arai, K., Kodama, A., Kousaka, T., Nakajima, K., Hayashi, S. & Hara, M., Preparation of a sulfonated porous carbon catalyst with the high specific surface area. Catalysis Letters, 131(1–2), pp. 242–249, 2009. [Crossref] [13] Shu, Q., Zhang, Q., Xu, G., Nawaz, Z., Wang, D. & Wang, J., Synthesis of biodiesel from cottonseed oil and methanol using a carbon-based solid acid catalyst. Fuel Processing Technology, 90(7), pp. 1002–1008, 2009. [Crossref] [14] Mo, X., Lotero, E., Lu, C., Liu, Y. & Goodwin, J.G., A novel sulfonated carbon composite solid acid catalyst for biodiesel synthesis. Catalysis Letters, 123 (1–2), pp. 1–6, 2008. [Crossref] [15] Liu, Y., Chen, J., Yao, J., Lu, Y., Zhang, L. & Liu, X., Preparation and properties of sulfonated carbon-silica composites from sucrose dispersed on MCM-48. Chemical Engineering Journal, 148(1), pp. 201–206, 2009. [Crossref] [16] Villa, A., Tessonnier, J.P., Majoulet, O., Su, D.S. & Schlögl, R., Amino-functionalized carbon nanotubes as solid basic catalysts for the transesterification of triglycerides. Chemical Communications, 29, pp. 4405–4407, 2009. [Crossref] [17] Sontakke, A.D. & Jha, P., Study of esterification of waste cooking oil using solid acid catalyst derived from coconut coir. International Journal of Engineering and Management Research, 7(3), pp. 363–366, 2017.
[18] Atabani A.E., Non-edible vegetable oils: a critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production. Renewable and Sustainable Energy Reviews, 18, pp. 211–245, 2013. [Crossref] [19] Iyer, P.V.R., Rao, T.R. & Grover, P.D., Biomass Thermo-Chemical Characterization, Chemical Engineering Department, IIT Delhi, p. 45, 2002.
[20] Srihari, V. & Das, A., Applied Ecology and Environmental Research, 1, p. 13, 2009.
[22] Siggia, S, Quantitative Organic Analysis via Functional Groups, 3rd edn., John Wiley & Sons: New Jersey, p. 54, 1967.
[23] Chouhan, A.S. & Sarma, A.K., Modern heterogeneous catalysts for biodiesel production: a comprehensive review. Renewable and Sustainable Energy Reviews, 15(9), pp. 4378–4399, 2011. [Crossref] [24] Chitra, P., Venkatachalam, P. & Sampathrajan, A., Optimisation of experimental conditions for biodiesel production from alkali-catalysed transesterification of Jatropha curcus oil. Energy for Sustainable Development, 9, pp. 13–18, 2005. [Crossref] [25] Bankovic-Ilic, I.B., Stamenkovic, O.S. & Veljkovic, V.B., Biodiesel production from non-edible plant oils. Renewable and Sustainable Energy Reviews, 16, pp. 3621–3647, 2012. [Crossref] [26] Verma, P. & Sharma, M.P., Comparative analysis of the effect of methanol and ethanol on Karanja biodiesel production and its optimisation. Fuel, 180, pp. 164–174, 2016. [Crossref] [27] Phan, A.N. & Phan, T.M., Biodiesel production from waste cooking oil. Fuel, 87, pp. 3490–3496, 2008. [Crossref]