Javascript is required
[1] Santamouris, M., Air-conditioning: energy consumption and environment quality, Encyclopedia of Life Support System (EOLSS), 2009.
[2] Pérez-Lombard, L., Ortiz, J. & Pout, C., A review on buildings energy consumption information. Energy and Buildings, 40(3), pp. 394–398, 2008. [Crossref]
[3] Gil, A., Medrano, M., Martorell, I., Lázaro, A., Dolado, P., Zalba, B. & Cabeza, L.F., State of the art on high temperature thermal energy storage for power generation. Part 1 — Concepts, materials and modellization. Renewable Sustainable Energy Reviews, 14, pp. 31–55, 2014. [Crossref]
[4] Haas, P. & Schmitt, P.L., Etude de l’aérodynamique interne d’un déphaseur d’ondes thermiques, Projet HES-SO, hepia-cmefe, 2009.
[5] Bernhard, M., Realizzazione e analisi di un prototipo per lo sfasamento dell’onda termica giornaliera estiva per il raffrescamento di ambienti residenziali, Master thesis at Bologna University, Prof. P. Haas (hepia-cmefe) and Prof. B. Pulvirenti (UNIBO), 2015.
[6] Egolf, P.W., Noume, A.N., Vuarnoz, D. & Gottschalk, G., Breathing building: A decentralized façade-integrated solar air-conditioning system, UNEP 2014.
[7] Muriset, C., Egolf, P.W., Vuarnoz, D. & Haas, P., Lowering and phase shifting of temperature profiles with phase change materials in Minergie houses, 8th IIR Conference on phase change materials and slurries for refrigerating and air conditioning, Karlsruhe, 2009.
[8] Zgraggen, J.-M., Etude d’un lit de sphères pour le déphasage d’une onde thermique – Calcul analytique et vérification expérimentale, Student work of the Geneva University, 10 October 2003.
[9] Hollmuller, P., Lachal, B., Zgraggen, J.-M., Pampaloni, E., Mezzo J., Déphaseur thermique diffusif, Rapport for the Swiss Federal Office of Energy SFOE, June 2004.
[10] Sharma, A., Tyagi, V.V., Chen, C.R. & Buddhi, D., Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews, 13, pp. 318–345, 2009. [Crossref]
[11] Abhat, A., Low temperature latent heat thermal energy storage: heat storage materials. Solar Energy, 30(4), pp. 313–332, 1983. [Crossref]
[12] Kumar, A. & Shukla, S.K., A review on thermal energy storage unit for solar thermal power plant application, International Conference on Technologies and Materials for Renewable Energy, Environment and Sustainability. Energy Procedia, 74, pp. 462–469, 2015. [Crossref]
[13] Anzar, A. & Shine, K., Transient thermal analysis of phase change material based heat sinks. International Journal of Research in Engineering and Technology, 2(11), pp. 703–714, 2013. [Crossref]
[14] Hollmuller, P., Utilisation des échangeurs air/sol pour le chauffage et le rafraîchissement des bâtiments – Mesures in situ, modélisation analytique, simulation numérique et analyse systémique, Thesis presented to the Faculty of Science at the University of Geneva, ref. 3357, 25 June 2002.
[15] Hollmuller, P., Lachal, B. & Zgraggen, J.M., A new ventilation and thermal storage technique for passive cooling of buildings: thermal phase-shifting, PLEA 23rd International conference on passive and low energy architecture, Geneva, Switzerland, 6–8 September 2006.
[16] Kumar, A. & Shukla, S.K., A review on thermal energy storage unit for solar thermal power plant application, International Conference on Technologies and Materials for Renewable Energy, Environment and Sustainability, TMREES15, 2015.
Search

Acadlore takes over the publication of IJEPM from 2025 Vol. 10, No. 3. The preceding volumes were published under a CC BY 4.0 license by the previous owner, and displayed here as agreed between Acadlore and the previous owner. ✯ : This issue/volume is not published by Acadlore.

Open Access
Research article

Development and Preliminary Evaluation of PCM Thermal Energy Storage for Air Cooling in Buildings

p. pontelandolfo1,
p. haas1,
r. da silva lima1,
o. sari2,
p. nikkola2
1
University of Applied Sciences and Arts Western Switzerland, HEPIA-Genève, Switzerland
2
University of Applied Sciences and Arts Western Switzerland, HEIG-VD, Switzerland
International Journal of Energy Production and Management
|
Volume 2, Issue 2, 2017
|
Pages 153-164
Received: N/A,
Revised: N/A,
Accepted: N/A,
Available online: N/A
View Full Article|Download PDF

Abstract:

This study presents the development of a real-scale latent heat thermal energy storage (TES) device based on an air-PCM (phase change material) heat exchanger. The device uses the outdoor ambient temperature difference between night and day to refresh the indoor air and shift or completely avoid the use of air-conditioning in air-cooling in the building sector. The design is based on an extensive set of numerical simulations, performed by the commercial software ANSYS Fluent, focused on a parametric study allowing to identify the optimum value of different design parameters in order to have 10 hours of temperature shift. The numerical simulations were supported by experimental measurements done with a small-scale test rig. Additionally, the thermal response of the PCM to cooling and heating was also studied in a controlled temperature and humidity environment.

Keywords: Buildings, CFD Simulations, Phase change material (PCM), Prototype development and realization, Thermal energy storage

1. Introduction

2. Propose and Prototype Technical Specifications

3. Building Model and Simulation

4. Prototype Components and Design

5. Thermal Response of the PCM

6. CFD Simulations and Validation by Experimental Measurements with a Small-Scale Test RIG

7. TES Prototype and Preliminary Measurements

8. Conclusions and Prospective of the Project

Acknowledgments

The present was supported by the University of Applied Sciences and Arts Western Switzer- land–HES-SO.

The authors acknowledge Blerim Arslani for his valuable contribution to complete and analyze many of CFD simulations.

References
[1] Santamouris, M., Air-conditioning: energy consumption and environment quality, Encyclopedia of Life Support System (EOLSS), 2009.
[2] Pérez-Lombard, L., Ortiz, J. & Pout, C., A review on buildings energy consumption information. Energy and Buildings, 40(3), pp. 394–398, 2008. [Crossref]
[3] Gil, A., Medrano, M., Martorell, I., Lázaro, A., Dolado, P., Zalba, B. & Cabeza, L.F., State of the art on high temperature thermal energy storage for power generation. Part 1 — Concepts, materials and modellization. Renewable Sustainable Energy Reviews, 14, pp. 31–55, 2014. [Crossref]
[4] Haas, P. & Schmitt, P.L., Etude de l’aérodynamique interne d’un déphaseur d’ondes thermiques, Projet HES-SO, hepia-cmefe, 2009.
[5] Bernhard, M., Realizzazione e analisi di un prototipo per lo sfasamento dell’onda termica giornaliera estiva per il raffrescamento di ambienti residenziali, Master thesis at Bologna University, Prof. P. Haas (hepia-cmefe) and Prof. B. Pulvirenti (UNIBO), 2015.
[6] Egolf, P.W., Noume, A.N., Vuarnoz, D. & Gottschalk, G., Breathing building: A decentralized façade-integrated solar air-conditioning system, UNEP 2014.
[7] Muriset, C., Egolf, P.W., Vuarnoz, D. & Haas, P., Lowering and phase shifting of temperature profiles with phase change materials in Minergie houses, 8th IIR Conference on phase change materials and slurries for refrigerating and air conditioning, Karlsruhe, 2009.
[8] Zgraggen, J.-M., Etude d’un lit de sphères pour le déphasage d’une onde thermique – Calcul analytique et vérification expérimentale, Student work of the Geneva University, 10 October 2003.
[9] Hollmuller, P., Lachal, B., Zgraggen, J.-M., Pampaloni, E., Mezzo J., Déphaseur thermique diffusif, Rapport for the Swiss Federal Office of Energy SFOE, June 2004.
[10] Sharma, A., Tyagi, V.V., Chen, C.R. & Buddhi, D., Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews, 13, pp. 318–345, 2009. [Crossref]
[11] Abhat, A., Low temperature latent heat thermal energy storage: heat storage materials. Solar Energy, 30(4), pp. 313–332, 1983. [Crossref]
[12] Kumar, A. & Shukla, S.K., A review on thermal energy storage unit for solar thermal power plant application, International Conference on Technologies and Materials for Renewable Energy, Environment and Sustainability. Energy Procedia, 74, pp. 462–469, 2015. [Crossref]
[13] Anzar, A. & Shine, K., Transient thermal analysis of phase change material based heat sinks. International Journal of Research in Engineering and Technology, 2(11), pp. 703–714, 2013. [Crossref]
[14] Hollmuller, P., Utilisation des échangeurs air/sol pour le chauffage et le rafraîchissement des bâtiments – Mesures in situ, modélisation analytique, simulation numérique et analyse systémique, Thesis presented to the Faculty of Science at the University of Geneva, ref. 3357, 25 June 2002.
[15] Hollmuller, P., Lachal, B. & Zgraggen, J.M., A new ventilation and thermal storage technique for passive cooling of buildings: thermal phase-shifting, PLEA 23rd International conference on passive and low energy architecture, Geneva, Switzerland, 6–8 September 2006.
[16] Kumar, A. & Shukla, S.K., A review on thermal energy storage unit for solar thermal power plant application, International Conference on Technologies and Materials for Renewable Energy, Environment and Sustainability, TMREES15, 2015.

Cite this:
APA Style
IEEE Style
BibTex Style
MLA Style
Chicago Style
GB-T-7714-2015
Pontelandolfo, P., Haas, P., da Silva Lima, R., Sari, O., & Nikkola, P. (2017). Development and Preliminary Evaluation of PCM Thermal Energy Storage for Air Cooling in Buildings. Int. J. Energy Prod. Manag., 2(2), 153-164. https://doi.org/10.2495/EQ-V2-N2-153-164
P. Pontelandolfo, P. Haas, R. da Silva Lima, O. Sari, and P. Nikkola, "Development and Preliminary Evaluation of PCM Thermal Energy Storage for Air Cooling in Buildings," Int. J. Energy Prod. Manag., vol. 2, no. 2, pp. 153-164, 2017. https://doi.org/10.2495/EQ-V2-N2-153-164
@research-article{Pontelandolfo2017DevelopmentAP,
title={Development and Preliminary Evaluation of PCM Thermal Energy Storage for Air Cooling in Buildings},
author={P. Pontelandolfo and P. Haas and R. Da Silva Lima and O. Sari and P. Nikkola},
journal={International Journal of Energy Production and Management},
year={2017},
page={153-164},
doi={https://doi.org/10.2495/EQ-V2-N2-153-164}
}
P. Pontelandolfo, et al. "Development and Preliminary Evaluation of PCM Thermal Energy Storage for Air Cooling in Buildings." International Journal of Energy Production and Management, v 2, pp 153-164. doi: https://doi.org/10.2495/EQ-V2-N2-153-164
P. Pontelandolfo, P. Haas, R. Da Silva Lima, O. Sari and P. Nikkola. "Development and Preliminary Evaluation of PCM Thermal Energy Storage for Air Cooling in Buildings." International Journal of Energy Production and Management, 2, (2017): 153-164. doi: https://doi.org/10.2495/EQ-V2-N2-153-164
PONTELANDOLFO P, HAAS P, DA SILVA LIMA R, et al. Development and Preliminary Evaluation of PCM Thermal Energy Storage for Air Cooling in Buildings[J]. International Journal of Energy Production and Management, 2017, 2(2): 153-164. https://doi.org/10.2495/EQ-V2-N2-153-164