[1] Ferguson, G. & Woodbury, A.D., Subsurface heat flow in an urban environment. Journal of Geophysical Research: Solid Earth, 109(B2), 2014.
[2] Taylor, C.A. & Stefan, H.G., Shallow groundwater temperature response to climate change and urbanization. Journal of Hydrology, 375(3), pp. 601–612, 2009. [Crossref] [3] Eggleston, J. & McCoy, K.J., Assessing the magnitude and timing of anthropogenic warming of a shallow aquifer: example from Virginia Beach, USA. Hydrogeology Journal, 23, pp. 105–120, 2015. [Crossref] [4] Balke, K., Das Grundwasser als Energieträger. Brennstoff-Wärme-Kraft, 29, pp. 191– 194, 1977.
[5] Menberg, K., Bayer, P., Zosseder, K., Rumohr, S. & Blum, P., Subsurface urban heat islands in German cities. Science of the Total Environment, 442, pp. 123–133, 2013. [Crossref] [6] Müller, N., Kuttler, W. & Barlag, A.-B., Analysis of the subsurface urban heat island in Oberhausen, Germany. Climate Research, 58(3), pp. 247–256, 2014. [Crossref] [7] García-Gil, A., Vazquez-Sune, E., Garrido Schneider, E., Angel Sanchez-Navarro, J. & Mateo-Lazaro, J., The thermal consequences of river-level variations in an urban groundwater body highly affected by groundwater heat pumps. Science of The Total Environment, 485–486, pp. 575–587, 2014. [Crossref] [8] Epting, J. & Huggenberger, P., Unraveling the heat island effect observed in urban groundwater bodies – Definition of a potential natural state. Journal of Hydrology, 501, pp. 193–204, 2013. [Crossref] [9] Taniguchi, M., Shimada, J., Tanaka, T., Kayane, I, Sakura, Y., Shimano, Y., Dapaah- Siakwan, S. & Kawashima, S., Disturbances of temperature depth profiles due to sur- face climate change and subsurface water flow: 1. An effect of linear increase in surface temperature caused by global warming and urbanization in the Tokyo Metropolitan Area, Japan. Water Resources Research, 35(5), pp. 1507–1517, 1999. [Crossref] [10] Yamano, M., Evolution of the Subsurface Thermal Environment in Urban Areas: Studies in Large Cities in East Asia, in Groundwater and Subsurface Environments, Springer, pp. 201–230, 2011. [Crossref] [11] Liu, C., Shi B., Tang, C. & Gao, L., A numerical and field Investigation of under- ground temperatures under urban heat island. Building and Environment, 46(5), pp. 1205–1210, 2011. [Crossref] [12] Zhan, W., Ju, W., Hai, S., Ferguson, G., Quan, J., Tang, C., Guo, Z. & Kong, F., Satel- lite-derived subsurface urban heat island. Environmental Science & Technology, 48, pp. 12134–12140, 2014. [Crossref] [13] Hötzl, H. & Makurat, A., Veränderungen der Grundwassertemperaturen unter dicht bebauten Flächen am Beispiel der Stadt Karlsruhe. Zeitschrift der Deutschen Geolo- gischen Gesellschaft, 132, pp. 767–777, 1981.
[14] Bonte, M., Stuyfzand, P.J., Hulsmann, A. & Van Beelen, P., Underground thermal energy storage: environmental risks and policy developments in the Netherlands and European Union. Ecology and Society, 16(1), p. 22, 2011.
[15] Brielmann, H., Griebler, C., Schmidt, SI., Michel, R. & Lueders, T., Effects of thermal energy discharge on shallow groundwater ecosystems. FEMS Microbiology Ecology, 68(3), pp. 273–286, 2009. [Crossref] [16] Allen, A., Milenic, D. & Sikora, P., Shallow gravel aquifers and the urban ‘heat island’effect: a source of low enthalpy geothermal energy. Geothermics, 32(4), pp. 569–578, 2003. [Crossref] [17] Arola, T. & Korkka-Niemi, K.,The effect of urban heat islands on geothermal potential: examples from Quaternary aquifers in Finland. Hydrogeology Journal, 22, pp. 1–15, 2014. [Crossref] [18] Sinnathamby, G., Gustavsson, H., Korkiala-Tanttu, L. & Perez Cervera, C., Numerical analysis of seasonal heat storage systems of alternative geothermal energy pile founda- tions. Journal of Energy Engineering, 141, 2014.
[19] Zhu, K., Blum, P., Ferguson, G., Balke, K.D. & Bayer, P., The geothermal potential of urban heat islands. Environmental Research Letters, 6, 2011. [Crossref] [20] Zhang, Y., Soga, K. & Choudhary, R., Shallow geothermal energy application with GSHPs at city scale: study on the city of Westminster. Géotechnique Letters, 4, pp. 125–131, 2014. [Crossref] [21] Hähnlein, S., Bayer, P., Ferguson, G. & Blum, P., Sustainability and policy for the thermal use of shallow geothermal energy. Energy Policy, 59, pp. 914–925, 2013. [Crossref] [22] Vienken, T., Schelenz, S., Rink, K. & Dietrich, P.,Sustainable intensive thermal use of the shallow subsurface—a critical view on the status quo. Groundwater, 53, pp. 356–361, 2014, http://dx.doi.org/10.1111/gwat.12206 [Crossref] [23] Banks, D., An Introduction to Thermogeology: Ground Source Heating and Cooling, John Wiley & Sons: Oxford, 2012. [Crossref] [24] Rybach, L. & Eugster, W.J., Sustainability aspects of geothermal heat pump operation, with experience from Switzerland. Geothermics, 39(4), pp. 365–369, 2010. [Crossref] [25] Rivera, J.A., Blum, P. & Bayer, P., Ground energy balance for borehole heat exchang- ers: Vertical fluxes, groundwater and storage. Renewable Energy, 83, pp. 1341–1351, 2015. [Crossref] [26] Henning, A. & Limberg, A., Veränderung des oberflächennahen Temperaturfeldes von Berlin durch Klimawandel und Urbanisierung. Brandenburgische Geowiss. Beitr, 19(1), pp. 81–92, 2012.
[27] Dohr, F., Die Grundwassertemperatur im oberflächennahen Grundwasser des Stadtgebietes München (PhD thesis), Ludwig-Maximilians-Universität: Munich, 1989.
[28] Hannappel, S. & Limberg, A., Ermittlung des Flurabstandes des oberflächennahen Grundwassers in Berlin (Determination of the floor distance of shallow groundwater in Berlin). Brandenburg Geowiss Beitr, 14, pp. 65–74, 2007.
[29] Seiler, K., Durchlässigkeit und Porosität von Lockergesteinen in Oberbayern. Mitteilung zur Ing.-u. Hydogeologie, 9, pp. 105–126, 1979.
[30] Zosseder, K., Heterogenitäten bei PAK-Kontaminationen im Grundwasser. Bochumer Geowiss. Arb, 12, p. 236, 2007.
[31] Geyer, O.F. & Gwinner, M.P., Geologie von Baden-Württemberg, 5 edn., Stuttgart: Schweizerbart, 2011.
[32] VDI., Thermische Nutzung des Untergrundes (Guideline for thermal use of the under- ground). In VDI-Richtlinie 4640, Verein Deutscher Ingenieure (VDI)-Gesellschaft Energietechnik: Germany, 2012.
[33] Limberg, A. & Thierbach, J., Hydrostratigraphie in Berlin - Korrelation mit dem Norddeutschen Gliederungsschema. Brandenburgische Geowissenschaftliche Beiträge, 9, pp. 65–68, 2002.
[34] Kerl, M., Runge, N., Tauchmann, H. & Goldscheider, N., Hydrogeologisches Konzept- modell von München: Grundlage für die thermische Grundwassernutzung. Grundwas- ser, 17(3), pp. 127–135, 2012. [Crossref] [35] Schafer, W., Wickert, F. & Tiehm, A., Modellrechnungen zur Quantifizierung von NA-Prozessen fur den LCKW-Schadensfall in Karlsruhe-Ost/Killisfeld. Grundwasser, 12(2), pp. 108–124, 2007.
[36] Prinz, H. & Strauss, R., Abriss der Ingenieurgeologie,Elsevier Spektrum akademischer Verlag: München, p. 671, 2006.
[37] Timm, U., Wohnsituation in Deutschland 2006 - Ergebnisse der Mikrozensus-Zusatzer- hebung, in Wirtschaft und Statistik, Statistisches Bundesamt: Wiesbaden, 2008.
[38] Menberg, K., Blum, P., Schaffitel, A. & Bayer, P., Long-term evolution of anthropo- genic heat fluxes into a subsurface urban heat island. Environmental Science & Technol- ogy, 47(17), pp. 9747–9755, 2013. [Crossref] [39] Benz, S.A., Bayer, P., Menberg, K., Jung, S. & Blum, P., Spatial resolution of anthropo- genic heat fluxes into urban aquifers. Science of The Total Environment, 524–525, pp. 427–439, 2015. [Crossref]