Javascript is required
[1] Luckeneder, S., Giljum, S.,. Schaffartzik, A, Maus, V., Tost, M. (2021). Surge in global metal mining threatens vulnerable ecosystems. Global Environmental Change, 69: 102303. [Crossref]
[2] Agboola, O., Babatunde, D.E., Fayomi, O.S.I., Sadiku, E.R., Popoola, P., Moropeng, L., Yahaya, A., Mamudu, O.A. (2020). A review on the impact of mining operation: Monitoring, assessment and management. Results in Engineering, 8: 100181. [Crossref]
[3] Patel, A., Enman, J., Gulkova, A., Guntoro, P.I., Dutkiewicz, A., Ghorbani, Y., Rova, U., Christakopoulos, P., Matsakas, L. (2021). Integrating biometallurgical recovery of metals with biogenic synthesis of nanoparticles. Chemosphere, 263: 128306. [Crossref]
[4] Shi, J., Du, P., Luo, H., Wu, H., Zhang, Y.H., Chen, J., Wu, M.H., Xu, G., Gao, H.F. (2022). Soil contamination with cadmium and potential risk around various mines in China during 2000–2020. Journal of Environmental Management, 310: 114509. [Crossref]
[5] Mondal, S., Singh, G., Jain, M.K. (2020). Spatio-temporal variation of air pollutants around the coal mining areas of Jharia Coalfield, India. Environmental Monitoring and Assessment, 192(6): 405. [Crossref]
[6] Kan, X., Dong, Y., Feng, L., Zhou, M., Hou, H. (2021). Contamination and health risk assessment of heavy metals in China’s lead–zinc mine tailings: A meta–analysis. Chemosphere, 267: 128909. [Crossref]
[7] Santana, C.S., Montalván Olivares, D.M., Silva, V.H.C., Luzardo, F.H.M., Velasco, F.G., de Jesus, R.M. (2020). Assessment of water resources pollution associated with mining activity in a semi-arid region. Journal of Environmental Management, 273: 111148. [Crossref]
[8] Satapathy, D.R., Salve, P.R., Katpatal, Y.B. (2009). Spatial distribution of metals in ground/surface waters in the Chandrapur district (Central India) and their plausible sources. Environmental Geology, 56(7): 1323-1352. [Crossref]
[9] Das, M., Semy, K. (2023). Monitoring the dynamics of acid mine drainage affected stream surface water hydrochemistry at Jaintia Hills, Meghalaya, India. Environmental Science and Pollution Research, 30(30): 75489-75499. [Crossref]
[10] Abdullah, N., Yusof, N., Lau, W.J., Jaafar, J., Ismail, A.F. (2019). Recent trends of heavy metal removal from water/wastewater by membrane technologies. Journal of Industrial and Engineering Chemistry, 76: 17-38. [Crossref]
[11] Xin, R., Banda, J.F., Hao, C., Dong, H.Y., Pei, L.X., Guo, D.Y., Wei, P.F., Du, Z.R., Zhang, Y., Dong, H.L. (2021). Contrasting seasonal variations of geochemistry and microbial community in two adjacent acid mine drainage lakes in Anhui Province, China. Environmental Pollution, 268: 115826. [Crossref]
[12] Ighalo, J.O., Kurniawan, S.B., Iwuozor, K.O., Aniagor, C.O., Ajala, O.J., Oba, S.N., Iwuchukwu, F.U., Ahmadi, S., Igwegbe, C.A. (2022). A review of treatment technologies for the mitigation of the toxic environmental effects of acid mine drainage (AMD). Process Safety and Environmental Protection, 157: 37-58. [Crossref]
[13] Tomiyama, S., Igarashi, T. (2022). The potential threat of mine drainage to groundwater resources. Current Opinion in Environmental Science & Health, 27: 100347. [Crossref]
[14] Gupta, A., Sar, P. (2020). Characterization and application of an anaerobic, iron and sulfate reducing bacterial culture in enhanced bioremediation of acid mine drainage impacted soil. Journal of Environmental Science Health Part A, 55(4): 464-482. [Crossref]
[15] Anekwe, I.M.S., Isa, Y.M. (2023). Bioremediation of acid mine drainage – Review. Alexandria Engineering Journal, 65: 1047-1075. [Crossref]
[16] Daraz, U., Li, Y., Ahmad, I., Iqbal, R., Ditta, A. (2023). Remediation technologies for acid mine drainage: Recent trends and future perspectives. Chemosphere, 311: 137089. [Crossref]
[17] Masindi, V., Akinwekomi, V., Maree, J.P., Muedi, K.L. (2017). Comparison of mine water neutralisation efficiencies of different alkaline generating agents. Journal of Environmental Chemical Engineering, 5(4): 3903-3913. [Crossref]
[18] Rezaie, B., Anderson, A. (2020). Sustainable resolutions for environmental threat of the acid mine drainage. Science of The Total Environment, 717: 137211. [Crossref]
[19] Skousen, J., Zipper, C.E., Rose, A., Ziemkiewicz, P.F., Nairn, R., McDonald, L.M., Kleinmann, R.L. (2017). Review of passive systems for acid mine drainage treatment. Mine Water and the Environment, 36(1): 133-153. [Crossref]
[20] Carrillo-González, R., González-Chávez, M.C.A., Cazares, G.O., Luna, J.L. (2022). Trace element adsorption from acid mine drainage and mine residues on nanometric hydroxyapatite. Environmental Monitoring and Assessment, 194(4): 280. [Crossref]
[21] Vásquez, Y., Galvis, J.A., Pazos, J., Vera, C., Herrera, O. (2022). Acid mine drainage treatment using zero-valent iron nanoparticles in biochemical passive reactors. Environmental Technology., 43(13): 1988-2001. [Crossref]
[22] Vasquez, Y., Neculita, C.M., Caicedo, G., Cubillos, J., Franco, J., Vásquez, M., Hernández, A., Roldan, F. (2022). Passive multi-unit field-pilot for acid mine drainage remediation: Performance and environmental assessment of post-treatment solid waste. Chemosphere, 291: 133051. [Crossref]
[23] Newsome, L., Falagán, C. (2021). The Microbiology of metal mine waste: Bioremediation applications and implications for planetary health. GeoHealth, 5(10): e2020GH000380. [Crossref]
[24] Biswas, R., Vivekanand, V., Saha, A., Ghosh, A., Sarkar, A. (2019). Arsenite oxidation by a facultative chemolithotrophic Delftia spp. BAs29 for its potential application in groundwater arsenic bioremediation. International Biodeterioration & Biodegradation, 136: 55-62. [Crossref]
[25] He, J., Chen, X., Zhang, Q., Achal, V. (2019). More effective immobilization of divalent lead than hexavalent chromium through carbonate mineralization by Staphylococcus epidermidis HJ2. International Biodeterioration & Biodegradation, 140: 67-71. [Crossref]
[26] Qu, M., Chen, J.M., Huang, Q.Q., Chen, J.L., Xu, Y.B., Luo, J.S., Wang, K., Gao, W.L., Zheng, Y.Y. (2018). Bioremediation of hexavalent chromium contaminated soil by a bioleaching system with weak magnetic fields. International Biodeterioration & Biodegradation, 128: 41-47. [Crossref]
[27] Mahbub, K.R., Krishnan, K., Megharaj, M., Naidu, R. (2016). Bioremediation potential of a highly mercury resistant bacterial strain Sphingobium SA2 isolated from contaminated soil. Chemosphere, 144: 330-337. [Crossref]
[28] Rahman, Z., Thomas, L., Singh, V.P. (2019). Biosorption of heavy metals by a lead (Pb) resistant bacterium, Staphylococcus hominis strain AMB-2. Journal of Basic Microbiology, 59(5): 477-486. [Crossref]
[29] Yuan, J., Ding, Z., Bi, Y., Li, J., Wen, S., Bai, S. (2022). Resource utilization of acid mine drainage (AMD): A review. Water, 14(15): 2385. [Crossref]
[30] Das, S., Jean, J.S., Chou, M.L., Rathod, J., Liu, C.C. (2016). Arsenite-oxidizing bacteria exhibiting plant growth promoting traits isolated from the rhizosphere of Oryza sativa L.: Implications for mitigation of arsenic contamination in paddies. Journal of Hazardous Materials, 302: 10-18. [Crossref]
[31] Rahman, Z., Singh, V.P. (2020). Bioremediation of toxic heavy metals (THMs) contaminated sites: Concepts, applications and challenges. Environmental Science and Pollution Research, 27(22): 27563-27581. [Crossref]
[32] Ruehl, M.D., Hiibel, S.R. (2020). Evaluation of organic carbon and microbial inoculum for bioremediation of acid mine drainage. Minerals Engineering, 15: 106554. [Crossref]
[33] Vulpe, C.B., Matica, M.A., Kovačević, R., Dascalu, D., Stevanovic, Z., Isvoran, A., Ostafe, V., Menghiu, G. (2023). Copper accumulation efficiency in different recombinant microorganism strains available for bioremediation of heavy metal-polluted waters. International Journal of Molecular Sciences, 24(8): 7575. [Crossref]
[34] Estupiñan, R., Romero, P., García, M., Garcés, D., Valverde, P. (2021). Mining in Ecuador. Past, present and future. Boletín Geológico y Min., 132(4): 533-549. [Crossref]
[35] Escobar-Segovia, K., Jiménez-Oyola, S., Garcés-León, D., Paz-Barzola, D., Navarrete, E.C., Romero-Crespo, P., Salgado, B. (2021). Heavy metals in rivers affected by mining activities in Ecuador: Pollution and human health implications. WIT Transactions on Ecology and the Environment, 250: 61-72. [Crossref]
[36] Romero-Crespo, P., Jiménez-Oyola, S., Salgado-Almeida, B., Zambrano-Anchundia, J., Goyburo-Chávez, C., González-Valoys, A., Higueras, P. (2023). Trace elements in farmland soils and crops, and probabilistic health risk assessment in areas influenced by mining activity in Ecuador. Environmental Geochemistry and Health, 45(7): 4549-4563. [Crossref]
[37] Jiménez-Oyola, S., García-Martínez, M.J., Ortega, M.F., Chavez, E., Romero, P., García-Garizabal, I., Bolonio, D. (2021). Ecological and probabilistic human health risk assessment of heavy metal(loid)s in river sediments affected by mining activities in Ecuador. Environmental Geochemistry and Health, 43(11): 4459-4474. [Crossref]
[38] Appleton, J.D., Williams, T.M., Orbea, H., Carrasco, M. (2001). Fluvial contamination associated with artisanal gold mining in the Ponce Enríquez, Portovelo-Zaruma and Nambija Areas, Ecuador. Water, Air, and Soil Pollution, 131(1): 19-39. [Crossref]
[39] Ministerio del Ambiente del Ecuador. (2015). TULSMA—097-A: Texto Unificado de Legislación Secundaria del Ministerio del Ambiente: Norma de Calidad Ambiental y de Descarga de Efluentes al Recurso Agua.
[40] Almeida-Guerra, P., Pindo, J., Hernandez, M., Coronel, J. (2023). Application of sustainable remediation techniques for heavy metal reduction in polluted rivers in mining zones: Study area Ponce Enriquez. ESPOCH Congresses: The Ecuadorian Journal of S.T.E.A.M., 3(1): 248-268. [Crossref]
[41] Grubb, D.G., Landers, D.G., Guerra, P.A., Miller, B., Bilgin, A., Hernandez, M.T. (2018). Sugarcane bagasse as a microbial host media for the passive treatment of acid mine drainage. Journal of Environmental Engineering, 144(10). [Crossref]
[42] Navada, S., Gaumet, F., Tveten, A.K., Kolarevic, J., Vadstein, O. (2021). Seeding as a start-up strategy for improving the acclimation of freshwater nitrifying bioreactors to salinity stress. Aquaculture, 540: 736663. [Crossref]
[43] Van Landuyt, J., Law, C.K.Y., Ostermeyer, P., Favere, J., Folens, K., Boon, N., Williamson, A.J. (2021). A combined culture-independent and simulation reactor approach to assess the microbial community of an operational denitrifying bioreactor treating As-bearing metallurgical wastewater. Bioresource Technology Reports, 16: 100870. [Crossref]
[44] Wijaya, J., Oh, S. (2023). Machine learning reveals the complex ecological interplay of microbiome in a full-scale membrane bioreactor wastewater treatment plant. Environmental Research, 222: 115366. [Crossref]
[45] Wang, H., Feyereisen, G.W., Wang, P., Rosen, C., Sadowsky, M.J., Ishii, S. (2023). Impacts of biostimulation and bioaugmentation on woodchip bioreactor microbiomes. Microbiology Spectrum, 11(5): e04053-22. [Crossref]
[46] Medina, J.S., Zhang, S., Wang, C., Zhou, J., Hong, P.Y. (2023). Decreasing hydraulic retention time of anaerobic membrane bioreactor: Effect on core genera and microbial contaminants removal. Bioresource Technology Reports, 22: 101389. [Crossref]
[47] Ostermeyer, P., Van Landuyt, J., Bonin, L., Folens, K., Williamson, A., Hennebel, T., Rabaey, K. (2022). High rate production of concentrated sulfides from metal bearing wastewater in an expanded bed hydrogenotrophic sulfate reducing bioreactor. Environmental Science and Ecotechnology, 11: 100173. [Crossref]
[48] Hellman, M., Hubalek, V., Juhanson, J., Almstrand, R., Peura, S., Hallin, S. (2021). Substrate type determines microbial activity and community composition in bioreactors for nitrate removal by denitrification at low temperature. Science of The Total Environment, 755: 143023. [Crossref]
[49] Zheng, Y., Zhou, Z., Ye, X.F., Huang, J., Jiang, L.Y., Chen, G., Chen, L.Y., Wang, Z.W. (2019). Identifying microbial community evolution in membrane bioreactors coupled with anaerobic side-stream reactor, packing carriers and ultrasonication for sludge reduction by linear discriminant analysis. Bioresource Technology, 291: 121920. [Crossref]
[50] Xu, F., Liao, J.L., Hu, J.C., Feng, Y.S., Huang, Y.Y., Li, S.F. (2023). Biofouling mitigation and microbial community dynamics in the membrane bioreactor by the indigenous quorum quenching bacterium Delftia sp. JL5. Bioresource Technology, 388: 129753. [Crossref]
[51] Wang, D., Luo, Q., Huang, K., Zhang, X.X. (2023). Distinct mechanisms underlying assembly processes and interactions of microbial communities in two single-stage bioreactors coupling anammox with denitrification. Chemical Engineering Journal, 452: 139319. [Crossref]
[52] Campoverde-Muñoz, P., Aguilar-Salas, L., Romero-Crespo, P., Valverde-Armas, P.E., Villamar-Marazita, K., Jiménez-Oyola, S., Garcés-León, D. (2022). Risk assessment of groundwater contamination in the Gala, Tenguel, and Siete River basins, Ponce Enriquez mining area—Ecuador. Sustainability, 15(1): 403. [Crossref]
[53] Palin, D., Rufato, K.B., Linde, G.A., Colauto, N.B., Caetano, J., Alberton, O., Jesus, D.A., Dragunski, D.C. (2016). Evaluation of Pb (II) biosorption utilizing sugarcane bagasse colonized by Basidiomycetes. Environmental Monitoring and Assessment, 188(5): 279. [Crossref]
[54] Iwar, R.T., Ogedengbe, K., Ugwudike, B.O. (2022). Groundwater fluoride removal by novel activated carbon/aluminium oxide composite derived from raffia palm shells: Optimization of batch operations and field-scale point of use system evaluation. Results in Engineering, 1: 100407. [Crossref]
[55] Ajala, E.O., Ayanshola, A.M., Obodo, C.I., Ajala, M.A., Ajala, O.J. (2022). Simultaneous removal of Zn(II) ions and pathogens from pharmaceutical wastewater using modified sugarcane bagasse as biosorbents. Results in Engineering, 15: 100493. [Crossref]
[56] Khoo, R.Z., Chow, W.S., Ismail, H. (2018). Sugarcane bagasse fiber and its cellulose nanocrystals for polymer reinforcement and heavy metal adsorbent: A review. Cellulose, 25(8): 4303-4330. [Crossref]
[57] Nogueira, E.W., Gouvêa de Godoi, L.A., Marques Yabuki, L.N., Brucha, G., Zamariolli Damianovic, M.H.R. (2021). Sulfate and metal removal from acid mine drainage using sugarcane vinasse as electron donor: Performance and microbial community of the down-flow structured-bed bioreactor. Bioresource Technology, 330: 124968. [Crossref]
[58] Song, H., Yim, G.J., Ji, S.W., Neculita, C.M., Hwang, T. (2012). Pilot-scale passive bioreactors for the treatment of acid mine drainage: Efficiency of mushroom compost vs. mixed substrates for metal removal. Journal of Environmental Management, 111: 150-158. [Crossref]
[59] Wang, H., Zhang, M., Dong, P., Xue, J., Liu L. (2024). Bioremediation of acid mine drainage using sulfate-reducing wetland bioreactor: Filling substrates influence, sulfide oxidation and microbial community. Chemosphere, 349: 140789. [Crossref]
[60] Sato, Y., Hamai, T., Hori, T., Aoyagi, T., Inaba, T., Hayashi, K., Kobayashi, M., Sakata, T., Habe, T. (2022). Optimal start-up conditions for the efficient treatment of acid mine drainage using sulfate-reducing bioreactors based on physicochemical and microbiome analyses. Journal of Hazardous Materials, 423: 127089. [Crossref]
Search

Acadlore takes over the publication of IJEI from 2025 Vol. 8, No. 5. The preceding volumes were published under a CC BY 4.0 license by the previous owner, and displayed here as agreed between Acadlore and the previous owner. ✯ : This issue/volume is not published by Acadlore.

Open Access
Research article

Efficiency of Bioreactors in the Removal of Heavy Metals in Acidic Metallic Mining-Influenced Water in Ponce Enríquez, Ecuador

paola almeida-guerra1*,
paulo escandón-panchana2,3,
maribel aguilar-aguilar2,4,
Mark T. Hernández5,
juan carlos pindo4,
fernando morante-carballo1,2,6
1
Facultad de Ciencias Naturales y Matemáticas (FCNM), ESPOL Polytechnic University, Guayaquil 090902, Ecuador
2
Centro de Investigación y Proyectos Aplicados a las Ciencias de la Tierra (CIPAT), ESPOL Polytechnic University, Guayaquil 090902, Ecuador
3
Escuela de Ciencias Ambientales, Universidad Espíritu Santo, Samborondón 0901952, Ecuador
4
Facultad de Ingeniería en Ciencias de la Tierra (FICT), ESPOL Polytechnic University, Guayaquil 090902, Ecuador
5
Department of Civil, Environmental and Architectural Engineering, University of Colorado Boulder, CO 80309 Boulder, United States
6
Geo-Recursos y Aplicaciones (GIGA), ESPOL Polytechnic University, Guayaquil 090902, Ecuador
International Journal of Environmental Impacts
|
Volume 8, Issue 3, 2025
|
Pages 445-456
Received: 12-30-2024,
Revised: 03-03-2025,
Accepted: 03-23-2025,
Available online: 06-29-2025
View Full Article|Download PDF

Abstract:

The mining effluent, acid mine drainage (AMD), is a major global environmental concern due to its high heavy metal content and highly acidic pH, which contaminates water and compromises the well-being of ecosystems and human health. Mining activity in southern Ecuador is characterised by artisanal and small-scale mining that exploits gold, silver, and copper, registering environmental problems associated mainly with river pollution. The objective of this study was to assess river water quality at 28 points in the Camilo Ponce Enríquez canton and subsequently evaluate the efficiency of various AMD bioremediation techniques with different components, including two different types of bacteria and sugarcane bagasse, by applying statistical methods and considering regulatory criteria. The proposed methodological approach consists of i) physicochemical characterisation of AMD, ii) implementation of pilot bioreactors, and iii) statistical study of bioreactor efficiency. The results show significant water contamination in rivers by AMD, resulting in heavy metal content of at least 0.1 ppb and greater than 1000 ppb in areas close to mining activity, exceeding the Ecuadorian maximum permissible limits. Statistical analysis of the bioreactor performance indicates that bioreactors containing bagasse and sulfate-reducing bacteria (SRB) demonstrated the most efficient techniques for the removal of heavy metals, reaching an average removal range of 85.35% and 89.64%, respectively, for metals such as Al, Cd, As, Cu, Fe, and Ni. This study provides a solid basis for using agricultural waste, such as sugarcane bagasse combined with SRB, to remove heavy metals in situ on a large scale to mitigate the environmental impacts of mining activity.

Keywords: Heavy metals, Artisanal and small-scale mining (ASM), Mining wastewater treatment, Sulfate reducing bacteria, Sugarcane bagass, Bioremediation

1. Introduction

2. Materials and Methods

3. Results

4. Interpretation of Results and Discussion

5. Conclusions

Contamination of water bodies by directly discharging AMD from artisanal mining activities in southern Ecuador is a national and cross-border environmental problem that threatens ecosystems and human health. The results of this study show that the investigated bioremediation techniques present significant variability in their efficiency depending on the type of components used. The PERMANOVA statistical analysis identified that the bioreactors that combine sugarcane bagasse and SRB (R1 and R2) present a greater efficiency in the removal of contaminants, reaching an average removal range of 85.35% and 89.64%, respectively, which is decisive in the effectiveness of the process.

The spatial distribution of pollutants in the water bodies shows that the areas with the highest contamination levels coincide with points close to the mining activity. This research highlights some limitations, such as the type of evaluation of bioreactor efficiency (under controlled laboratory conditions) that could influence the actual in situ behavior and the need to expand to more water sampling stations in rivers for greater precision of the interpolation map.

Future lines of research may include validation in situ of the bioremediation techniques on a large scale, considering specific environmental variables, such as changes in AMD volume, temperature, and pH; as well as the exploration of alternative bacterial strains. It is also recommended that the scope of the spatial analysis of contaminants be expanded with a higher sampling density integrated into predictive models that allow the evaluation of future contamination scenarios in the investigated area. Finally, considering land use and cover, the need for future studies on the impact of heavy metal contamination on shrimp farms, one of the main economic activities in the country.

Acknowledgments

This work was supported by the research project "Registration of geological sites of interest in Ecuador for sustainable development strategies”, Code CIPAT-004-2024 of ESPOL Polytechnic University. To the Project “Environmental characterisation and remediation of mining effluents through implementation of a sustainable pilot plant based on the use of industrial waste. Case study: Ponce Enríquez” with code T4-DI-2024 del SENESCYT. We also thank professor-researcher Eng. Paúl Carrión-Mero, Ph.D., for his help and support in the development of this article. Finally, to the professors-researchers Eng. Luis Domínguez, Ph.D., and Eng. Mijail Arias, Ph.D. for their help in collecting field data.

References
[1] Luckeneder, S., Giljum, S.,. Schaffartzik, A, Maus, V., Tost, M. (2021). Surge in global metal mining threatens vulnerable ecosystems. Global Environmental Change, 69: 102303. [Crossref]
[2] Agboola, O., Babatunde, D.E., Fayomi, O.S.I., Sadiku, E.R., Popoola, P., Moropeng, L., Yahaya, A., Mamudu, O.A. (2020). A review on the impact of mining operation: Monitoring, assessment and management. Results in Engineering, 8: 100181. [Crossref]
[3] Patel, A., Enman, J., Gulkova, A., Guntoro, P.I., Dutkiewicz, A., Ghorbani, Y., Rova, U., Christakopoulos, P., Matsakas, L. (2021). Integrating biometallurgical recovery of metals with biogenic synthesis of nanoparticles. Chemosphere, 263: 128306. [Crossref]
[4] Shi, J., Du, P., Luo, H., Wu, H., Zhang, Y.H., Chen, J., Wu, M.H., Xu, G., Gao, H.F. (2022). Soil contamination with cadmium and potential risk around various mines in China during 2000–2020. Journal of Environmental Management, 310: 114509. [Crossref]
[5] Mondal, S., Singh, G., Jain, M.K. (2020). Spatio-temporal variation of air pollutants around the coal mining areas of Jharia Coalfield, India. Environmental Monitoring and Assessment, 192(6): 405. [Crossref]
[6] Kan, X., Dong, Y., Feng, L., Zhou, M., Hou, H. (2021). Contamination and health risk assessment of heavy metals in China’s lead–zinc mine tailings: A meta–analysis. Chemosphere, 267: 128909. [Crossref]
[7] Santana, C.S., Montalván Olivares, D.M., Silva, V.H.C., Luzardo, F.H.M., Velasco, F.G., de Jesus, R.M. (2020). Assessment of water resources pollution associated with mining activity in a semi-arid region. Journal of Environmental Management, 273: 111148. [Crossref]
[8] Satapathy, D.R., Salve, P.R., Katpatal, Y.B. (2009). Spatial distribution of metals in ground/surface waters in the Chandrapur district (Central India) and their plausible sources. Environmental Geology, 56(7): 1323-1352. [Crossref]
[9] Das, M., Semy, K. (2023). Monitoring the dynamics of acid mine drainage affected stream surface water hydrochemistry at Jaintia Hills, Meghalaya, India. Environmental Science and Pollution Research, 30(30): 75489-75499. [Crossref]
[10] Abdullah, N., Yusof, N., Lau, W.J., Jaafar, J., Ismail, A.F. (2019). Recent trends of heavy metal removal from water/wastewater by membrane technologies. Journal of Industrial and Engineering Chemistry, 76: 17-38. [Crossref]
[11] Xin, R., Banda, J.F., Hao, C., Dong, H.Y., Pei, L.X., Guo, D.Y., Wei, P.F., Du, Z.R., Zhang, Y., Dong, H.L. (2021). Contrasting seasonal variations of geochemistry and microbial community in two adjacent acid mine drainage lakes in Anhui Province, China. Environmental Pollution, 268: 115826. [Crossref]
[12] Ighalo, J.O., Kurniawan, S.B., Iwuozor, K.O., Aniagor, C.O., Ajala, O.J., Oba, S.N., Iwuchukwu, F.U., Ahmadi, S., Igwegbe, C.A. (2022). A review of treatment technologies for the mitigation of the toxic environmental effects of acid mine drainage (AMD). Process Safety and Environmental Protection, 157: 37-58. [Crossref]
[13] Tomiyama, S., Igarashi, T. (2022). The potential threat of mine drainage to groundwater resources. Current Opinion in Environmental Science & Health, 27: 100347. [Crossref]
[14] Gupta, A., Sar, P. (2020). Characterization and application of an anaerobic, iron and sulfate reducing bacterial culture in enhanced bioremediation of acid mine drainage impacted soil. Journal of Environmental Science Health Part A, 55(4): 464-482. [Crossref]
[15] Anekwe, I.M.S., Isa, Y.M. (2023). Bioremediation of acid mine drainage – Review. Alexandria Engineering Journal, 65: 1047-1075. [Crossref]
[16] Daraz, U., Li, Y., Ahmad, I., Iqbal, R., Ditta, A. (2023). Remediation technologies for acid mine drainage: Recent trends and future perspectives. Chemosphere, 311: 137089. [Crossref]
[17] Masindi, V., Akinwekomi, V., Maree, J.P., Muedi, K.L. (2017). Comparison of mine water neutralisation efficiencies of different alkaline generating agents. Journal of Environmental Chemical Engineering, 5(4): 3903-3913. [Crossref]
[18] Rezaie, B., Anderson, A. (2020). Sustainable resolutions for environmental threat of the acid mine drainage. Science of The Total Environment, 717: 137211. [Crossref]
[19] Skousen, J., Zipper, C.E., Rose, A., Ziemkiewicz, P.F., Nairn, R., McDonald, L.M., Kleinmann, R.L. (2017). Review of passive systems for acid mine drainage treatment. Mine Water and the Environment, 36(1): 133-153. [Crossref]
[20] Carrillo-González, R., González-Chávez, M.C.A., Cazares, G.O., Luna, J.L. (2022). Trace element adsorption from acid mine drainage and mine residues on nanometric hydroxyapatite. Environmental Monitoring and Assessment, 194(4): 280. [Crossref]
[21] Vásquez, Y., Galvis, J.A., Pazos, J., Vera, C., Herrera, O. (2022). Acid mine drainage treatment using zero-valent iron nanoparticles in biochemical passive reactors. Environmental Technology., 43(13): 1988-2001. [Crossref]
[22] Vasquez, Y., Neculita, C.M., Caicedo, G., Cubillos, J., Franco, J., Vásquez, M., Hernández, A., Roldan, F. (2022). Passive multi-unit field-pilot for acid mine drainage remediation: Performance and environmental assessment of post-treatment solid waste. Chemosphere, 291: 133051. [Crossref]
[23] Newsome, L., Falagán, C. (2021). The Microbiology of metal mine waste: Bioremediation applications and implications for planetary health. GeoHealth, 5(10): e2020GH000380. [Crossref]
[24] Biswas, R., Vivekanand, V., Saha, A., Ghosh, A., Sarkar, A. (2019). Arsenite oxidation by a facultative chemolithotrophic Delftia spp. BAs29 for its potential application in groundwater arsenic bioremediation. International Biodeterioration & Biodegradation, 136: 55-62. [Crossref]
[25] He, J., Chen, X., Zhang, Q., Achal, V. (2019). More effective immobilization of divalent lead than hexavalent chromium through carbonate mineralization by Staphylococcus epidermidis HJ2. International Biodeterioration & Biodegradation, 140: 67-71. [Crossref]
[26] Qu, M., Chen, J.M., Huang, Q.Q., Chen, J.L., Xu, Y.B., Luo, J.S., Wang, K., Gao, W.L., Zheng, Y.Y. (2018). Bioremediation of hexavalent chromium contaminated soil by a bioleaching system with weak magnetic fields. International Biodeterioration & Biodegradation, 128: 41-47. [Crossref]
[27] Mahbub, K.R., Krishnan, K., Megharaj, M., Naidu, R. (2016). Bioremediation potential of a highly mercury resistant bacterial strain Sphingobium SA2 isolated from contaminated soil. Chemosphere, 144: 330-337. [Crossref]
[28] Rahman, Z., Thomas, L., Singh, V.P. (2019). Biosorption of heavy metals by a lead (Pb) resistant bacterium, Staphylococcus hominis strain AMB-2. Journal of Basic Microbiology, 59(5): 477-486. [Crossref]
[29] Yuan, J., Ding, Z., Bi, Y., Li, J., Wen, S., Bai, S. (2022). Resource utilization of acid mine drainage (AMD): A review. Water, 14(15): 2385. [Crossref]
[30] Das, S., Jean, J.S., Chou, M.L., Rathod, J., Liu, C.C. (2016). Arsenite-oxidizing bacteria exhibiting plant growth promoting traits isolated from the rhizosphere of Oryza sativa L.: Implications for mitigation of arsenic contamination in paddies. Journal of Hazardous Materials, 302: 10-18. [Crossref]
[31] Rahman, Z., Singh, V.P. (2020). Bioremediation of toxic heavy metals (THMs) contaminated sites: Concepts, applications and challenges. Environmental Science and Pollution Research, 27(22): 27563-27581. [Crossref]
[32] Ruehl, M.D., Hiibel, S.R. (2020). Evaluation of organic carbon and microbial inoculum for bioremediation of acid mine drainage. Minerals Engineering, 15: 106554. [Crossref]
[33] Vulpe, C.B., Matica, M.A., Kovačević, R., Dascalu, D., Stevanovic, Z., Isvoran, A., Ostafe, V., Menghiu, G. (2023). Copper accumulation efficiency in different recombinant microorganism strains available for bioremediation of heavy metal-polluted waters. International Journal of Molecular Sciences, 24(8): 7575. [Crossref]
[34] Estupiñan, R., Romero, P., García, M., Garcés, D., Valverde, P. (2021). Mining in Ecuador. Past, present and future. Boletín Geológico y Min., 132(4): 533-549. [Crossref]
[35] Escobar-Segovia, K., Jiménez-Oyola, S., Garcés-León, D., Paz-Barzola, D., Navarrete, E.C., Romero-Crespo, P., Salgado, B. (2021). Heavy metals in rivers affected by mining activities in Ecuador: Pollution and human health implications. WIT Transactions on Ecology and the Environment, 250: 61-72. [Crossref]
[36] Romero-Crespo, P., Jiménez-Oyola, S., Salgado-Almeida, B., Zambrano-Anchundia, J., Goyburo-Chávez, C., González-Valoys, A., Higueras, P. (2023). Trace elements in farmland soils and crops, and probabilistic health risk assessment in areas influenced by mining activity in Ecuador. Environmental Geochemistry and Health, 45(7): 4549-4563. [Crossref]
[37] Jiménez-Oyola, S., García-Martínez, M.J., Ortega, M.F., Chavez, E., Romero, P., García-Garizabal, I., Bolonio, D. (2021). Ecological and probabilistic human health risk assessment of heavy metal(loid)s in river sediments affected by mining activities in Ecuador. Environmental Geochemistry and Health, 43(11): 4459-4474. [Crossref]
[38] Appleton, J.D., Williams, T.M., Orbea, H., Carrasco, M. (2001). Fluvial contamination associated with artisanal gold mining in the Ponce Enríquez, Portovelo-Zaruma and Nambija Areas, Ecuador. Water, Air, and Soil Pollution, 131(1): 19-39. [Crossref]
[39] Ministerio del Ambiente del Ecuador. (2015). TULSMA—097-A: Texto Unificado de Legislación Secundaria del Ministerio del Ambiente: Norma de Calidad Ambiental y de Descarga de Efluentes al Recurso Agua.
[40] Almeida-Guerra, P., Pindo, J., Hernandez, M., Coronel, J. (2023). Application of sustainable remediation techniques for heavy metal reduction in polluted rivers in mining zones: Study area Ponce Enriquez. ESPOCH Congresses: The Ecuadorian Journal of S.T.E.A.M., 3(1): 248-268. [Crossref]
[41] Grubb, D.G., Landers, D.G., Guerra, P.A., Miller, B., Bilgin, A., Hernandez, M.T. (2018). Sugarcane bagasse as a microbial host media for the passive treatment of acid mine drainage. Journal of Environmental Engineering, 144(10). [Crossref]
[42] Navada, S., Gaumet, F., Tveten, A.K., Kolarevic, J., Vadstein, O. (2021). Seeding as a start-up strategy for improving the acclimation of freshwater nitrifying bioreactors to salinity stress. Aquaculture, 540: 736663. [Crossref]
[43] Van Landuyt, J., Law, C.K.Y., Ostermeyer, P., Favere, J., Folens, K., Boon, N., Williamson, A.J. (2021). A combined culture-independent and simulation reactor approach to assess the microbial community of an operational denitrifying bioreactor treating As-bearing metallurgical wastewater. Bioresource Technology Reports, 16: 100870. [Crossref]
[44] Wijaya, J., Oh, S. (2023). Machine learning reveals the complex ecological interplay of microbiome in a full-scale membrane bioreactor wastewater treatment plant. Environmental Research, 222: 115366. [Crossref]
[45] Wang, H., Feyereisen, G.W., Wang, P., Rosen, C., Sadowsky, M.J., Ishii, S. (2023). Impacts of biostimulation and bioaugmentation on woodchip bioreactor microbiomes. Microbiology Spectrum, 11(5): e04053-22. [Crossref]
[46] Medina, J.S., Zhang, S., Wang, C., Zhou, J., Hong, P.Y. (2023). Decreasing hydraulic retention time of anaerobic membrane bioreactor: Effect on core genera and microbial contaminants removal. Bioresource Technology Reports, 22: 101389. [Crossref]
[47] Ostermeyer, P., Van Landuyt, J., Bonin, L., Folens, K., Williamson, A., Hennebel, T., Rabaey, K. (2022). High rate production of concentrated sulfides from metal bearing wastewater in an expanded bed hydrogenotrophic sulfate reducing bioreactor. Environmental Science and Ecotechnology, 11: 100173. [Crossref]
[48] Hellman, M., Hubalek, V., Juhanson, J., Almstrand, R., Peura, S., Hallin, S. (2021). Substrate type determines microbial activity and community composition in bioreactors for nitrate removal by denitrification at low temperature. Science of The Total Environment, 755: 143023. [Crossref]
[49] Zheng, Y., Zhou, Z., Ye, X.F., Huang, J., Jiang, L.Y., Chen, G., Chen, L.Y., Wang, Z.W. (2019). Identifying microbial community evolution in membrane bioreactors coupled with anaerobic side-stream reactor, packing carriers and ultrasonication for sludge reduction by linear discriminant analysis. Bioresource Technology, 291: 121920. [Crossref]
[50] Xu, F., Liao, J.L., Hu, J.C., Feng, Y.S., Huang, Y.Y., Li, S.F. (2023). Biofouling mitigation and microbial community dynamics in the membrane bioreactor by the indigenous quorum quenching bacterium Delftia sp. JL5. Bioresource Technology, 388: 129753. [Crossref]
[51] Wang, D., Luo, Q., Huang, K., Zhang, X.X. (2023). Distinct mechanisms underlying assembly processes and interactions of microbial communities in two single-stage bioreactors coupling anammox with denitrification. Chemical Engineering Journal, 452: 139319. [Crossref]
[52] Campoverde-Muñoz, P., Aguilar-Salas, L., Romero-Crespo, P., Valverde-Armas, P.E., Villamar-Marazita, K., Jiménez-Oyola, S., Garcés-León, D. (2022). Risk assessment of groundwater contamination in the Gala, Tenguel, and Siete River basins, Ponce Enriquez mining area—Ecuador. Sustainability, 15(1): 403. [Crossref]
[53] Palin, D., Rufato, K.B., Linde, G.A., Colauto, N.B., Caetano, J., Alberton, O., Jesus, D.A., Dragunski, D.C. (2016). Evaluation of Pb (II) biosorption utilizing sugarcane bagasse colonized by Basidiomycetes. Environmental Monitoring and Assessment, 188(5): 279. [Crossref]
[54] Iwar, R.T., Ogedengbe, K., Ugwudike, B.O. (2022). Groundwater fluoride removal by novel activated carbon/aluminium oxide composite derived from raffia palm shells: Optimization of batch operations and field-scale point of use system evaluation. Results in Engineering, 1: 100407. [Crossref]
[55] Ajala, E.O., Ayanshola, A.M., Obodo, C.I., Ajala, M.A., Ajala, O.J. (2022). Simultaneous removal of Zn(II) ions and pathogens from pharmaceutical wastewater using modified sugarcane bagasse as biosorbents. Results in Engineering, 15: 100493. [Crossref]
[56] Khoo, R.Z., Chow, W.S., Ismail, H. (2018). Sugarcane bagasse fiber and its cellulose nanocrystals for polymer reinforcement and heavy metal adsorbent: A review. Cellulose, 25(8): 4303-4330. [Crossref]
[57] Nogueira, E.W., Gouvêa de Godoi, L.A., Marques Yabuki, L.N., Brucha, G., Zamariolli Damianovic, M.H.R. (2021). Sulfate and metal removal from acid mine drainage using sugarcane vinasse as electron donor: Performance and microbial community of the down-flow structured-bed bioreactor. Bioresource Technology, 330: 124968. [Crossref]
[58] Song, H., Yim, G.J., Ji, S.W., Neculita, C.M., Hwang, T. (2012). Pilot-scale passive bioreactors for the treatment of acid mine drainage: Efficiency of mushroom compost vs. mixed substrates for metal removal. Journal of Environmental Management, 111: 150-158. [Crossref]
[59] Wang, H., Zhang, M., Dong, P., Xue, J., Liu L. (2024). Bioremediation of acid mine drainage using sulfate-reducing wetland bioreactor: Filling substrates influence, sulfide oxidation and microbial community. Chemosphere, 349: 140789. [Crossref]
[60] Sato, Y., Hamai, T., Hori, T., Aoyagi, T., Inaba, T., Hayashi, K., Kobayashi, M., Sakata, T., Habe, T. (2022). Optimal start-up conditions for the efficient treatment of acid mine drainage using sulfate-reducing bioreactors based on physicochemical and microbiome analyses. Journal of Hazardous Materials, 423: 127089. [Crossref]
Nomenclature

pH

Hydrogen potentia

DO

Dissolved oxygen

ppb

Parts per billion

Appendix

Table S1

Station

Latitude

Longitude

Al

As

Ba

Cd

Co

Cr

Cu

Fe

Mn

Ni

Pb

Se

Zn

E1

9661467

637364

116.2

25.8

9.7

0.2

5.5

0.3

19.3

414.2

408.6

5.6

0.8

0.8

14.7

E2

9659855

636446

42.3

1.4

7.3

DL

0.1

DL

DL

105.0

19.5

DL

0.1

DL

2.5

E3

9661351

637396

145.9

25.7

7.6

0.1

4.3

0.4

22.4

468.8

434.9

DL

1.2

0.5

14.9

E4

9659509

639639

86.1

8.8

5.3

0.0

0.5

0.8

DL

157.0

16.1

DL

0.1

0.6

17.7

E5

9659933

638450

178.8

27.8

7.0

0.1

4.8

0.7

51.3

492.8

348.7

4.5

1.2

DL

10.3

E6

9658876

637783

40.6

1.3

7.1

DL

0.1

0.3

DL

67.3

8.2

DL

0.0

DL

6.2

E7

9657443

641420

102.5

35.5

4.8

0.1

6.0

0.3

118.7

709.8

328.1

6.4

1.1

0.5

7.3

E8

9657536

642336

109.7

55.1

16.3

0.3

28.0

0.8

766.2

964.3

1294.2

37.0

0.2

3.0

22.3

E9

9657520

642323

127.1

37.9

3.8

DL

0.8

0.4

24.8

314.3

61.1

DL

1.0

0.4

1.9

E10

9657825

641881

53.7

92.6

2.2

0.1

1.2

0.5

DL

297.4

40.8

DL

0.1

0.6

5.1

E11

9657095

643604

389.1

164.7

6.4

0.1

4.9

1.6

89.1

2368.5

237.8

6.0

8.6

0.8

18.1

E12

9656824

643679

82.1

2.6

4.6

DL

0.1

0.5

DL

117.5

4.7

DL

0.1

DL

2.7

E13

9656334

640959

138.1

1.0

6.5

DL

0.1

0.3

DL

203.8

3.3

DL

0.1

DL

2.9

E14

9656992

641559

256.5

0.6

10.6

DL

0.2

0.9

DL

244.5

9.6

DL

0.1

0.4

2.7

E15

9657610

644336

6831.2

736.3

16.9

1.5

30.5

16.6

177.6

28318.5

566.8

27.8

65.9

0.6

188.6

E16

9656491

645839

55.1

3.7

5.3

DL

0.0

0.3

DL

85.5

2.6

DL

0.1

DL

11.2

E17

9661190

639389

136.1

12.5

15.5

0.6

29.7

0.6

366.5

256.2

820.8

26.5

0.2

DL

29.5

E18

9661956

640140

90.9

4.9

5.8

0.0

1.4

0.5

DL

366.7

210.5

DL

0.1

0.9

2.4

E19

9663306

639401

58.2

5.6

7.2

DL

0.1

DL

DL

182.8

5.6

DL

0.1

0.5

7.4

E20

9661019

643188

1069.4

5.5

16.6

1.5

73.0

0.3

254.9

494.3

1215.9

81.5

0.3

0.9

180.3

E21

9661429

640272

226.1

15.1

15.4

0.5

35.9

0.7

648.9

360.4

761.1

32.7

0.2

1.0

15.1

E22

9661341

640801

245.7

7.0

13.5

0.6

41.2

0.6

833.1

383.3

801.5

37.6

0.1

1.5

42.2

E23

9662358

640840

132.7

8.0

6.1

0.1

2.9

DL

3.3

246.1

221.4

DL

0.1

1.1

8.0

E24

9664299

640828

86.4

8.7

6.7

0.0

0.2

0.2

DL

230.4

9.4

DL

0.1

0.7

32.7

E25

9664678

641695

264.8

5.3

5.6

DL

0.3

0.7

3.1

302.3

11.3

DL

0.1

DL

4.9

E26

9661202

638995

41.2

8.2

14.3

0.3

11.8

0.7

28.4

162.0

396.9

10.2

0.0

1.1

15.9

E27

9658353

641384

92.4

30.4

4.0

0.0

0.7

4.6

DL

240.9

71.3

6.3

0.5

DL

3.2

E28

9658547

641382

49.2

2.7

2.3

DL

2.3

1.8

DL

91.1

6.6

DL

0.1

DL

2.9


Cite this:
APA Style
IEEE Style
BibTex Style
MLA Style
Chicago Style
GB-T-7714-2015
Almeida-guerra, P., Escandón-panchana, P., Aguilar-aguilar, M., Hernández, M. T., Pindo, J. C., & Morante-carballo, F. (2025). Efficiency of Bioreactors in the Removal of Heavy Metals in Acidic Metallic Mining-Influenced Water in Ponce Enríquez, Ecuador. Int. J. Environ. Impacts., 8(3), 445-456. https://doi.org/10.18280/ijei.080303
P. Almeida-guerra, P. Escandón-panchana, M. Aguilar-aguilar, M. T. Hernández, J. C. Pindo, and F. Morante-carballo, "Efficiency of Bioreactors in the Removal of Heavy Metals in Acidic Metallic Mining-Influenced Water in Ponce Enríquez, Ecuador," Int. J. Environ. Impacts., vol. 8, no. 3, pp. 445-456, 2025. https://doi.org/10.18280/ijei.080303
@research-article{Almeida-guerra2025EfficiencyOB,
title={Efficiency of Bioreactors in the Removal of Heavy Metals in Acidic Metallic Mining-Influenced Water in Ponce Enríquez, Ecuador},
author={Paola Almeida-Guerra and Paulo EscandóN-Panchana and Maribel Aguilar-Aguilar and Mark T. HernáNdez and Juan Carlos Pindo and Fernando Morante-Carballo},
journal={International Journal of Environmental Impacts},
year={2025},
page={445-456},
doi={https://doi.org/10.18280/ijei.080303}
}
Paola Almeida-Guerra, et al. "Efficiency of Bioreactors in the Removal of Heavy Metals in Acidic Metallic Mining-Influenced Water in Ponce Enríquez, Ecuador." International Journal of Environmental Impacts, v 8, pp 445-456. doi: https://doi.org/10.18280/ijei.080303
Paola Almeida-Guerra, Paulo EscandóN-Panchana, Maribel Aguilar-Aguilar, Mark T. HernáNdez, Juan Carlos Pindo and Fernando Morante-Carballo. "Efficiency of Bioreactors in the Removal of Heavy Metals in Acidic Metallic Mining-Influenced Water in Ponce Enríquez, Ecuador." International Journal of Environmental Impacts, 8, (2025): 445-456. doi: https://doi.org/10.18280/ijei.080303
Almeida-guerra P., Escandón-panchana P., Aguilar-aguilar M., et al. Efficiency of Bioreactors in the Removal of Heavy Metals in Acidic Metallic Mining-Influenced Water in Ponce Enríquez, Ecuador[J]. International Journal of Environmental Impacts, 2025, 8(3): 445-456. https://doi.org/10.18280/ijei.080303