[1] Kuhn, M. & Johnson, K., Applied Predictive Modeling, Springer, 2013.
[2] LondonAir. (2013, 03/04/2013). London Air quality Network. Available: http://www.londonair.org.uk/london/asp/datadownload.asp
[3] Benas, N., Beloconi, A. & Chrysoulakis, N., Estimation of urban PM10 concentration, based on MODIS and MERIS/AATSR synergistic observations. Atmospheric Environment, 79, pp. 448–454, Nov 2013.
[4] Chen, Y. Y., Shi, R. H., Shu, S. J. & Gao, W., Ensemble and enhanced PM10 concentration forecast model based on stepwise regression and wavelet analysis. Atmospheric Environment, 74, pp. 346–359, Aug 2013.
[5] de Paula, P. H. M., Mateus, V. L., Araripe, D. R., Duyck, C. B., Saint’Pierre, T. D. & Gioda, A., Biomonitoring of metals for air pollution assessment using a hemiepiphyte herb (Struthanthus flexicaulis). Chemosphere, 138, pp. 429–437, Nov 2015.
[6] Deka, P., Bhuyan, P., Daimari, R., Sarma, K. P. & Hoque, R. R., Metallic species in PM10 and source apportionment using PCA-MLR modeling over mid-Brahmaputra Valley. Arabian Journal of Geosciences, 9, May 2016.
[7] Guo, X. Y., Li, C., Gao, Y., Tang, L., Briki, M., Ding, H. J., et al., Sources of organic matter (PAHs and n-alkanes) in PM2.5 of Beijing in haze weather analyzed by combining the C-N isotopic and PCA-MLR analyses. Environmental Science-Processes & Impacts, 18, pp. 314–322, 2016.
[8] He, H. D., Lu, W. Z., & Xue, Y. Prediction of particulate matters at urban intersection by using multilayer perceptron model based on principal components. Stochastic Environmental Research and Risk Assessment, 29, pp. 2107–2114, Dec 2015.
[9] James, G., Witten, D. & Hastie, T., An Introduction to Statistical Learning: With Applications in R. ed, 2014.
[10] Karamizadeh, S., Abdullah, S. M., Manaf, A. A., Zamani, M. & Hooman, A., An Overview of Principal Component Analysis. Journal of Signal and Information Processing, 4, p. 173, 2013.
[11] Singh, K. P., Gupta, S., Kumar, A. & Shukla, S. P. Linear and nonlinear modeling approaches for urban air quality prediction. Science of the Total Environment, 426, pp. 244–255, Jun 2012.
[12] Chen, Y., Shi, R., Shu, S. & Gao, W., Ensemble and enhanced PM10 concentration forecast model based on stepwise regression and wavelet analysis. Atmospheric Environment, 74, pp. 346–359, 8// 2013.
[13] Whittingham, M. J., Stephens, P. A., Bradbury, R. B. & Freckleton, R. P., Why do we still use stepwise modelling in ecology and behaviour? Journal of Animal Ecology, 75, pp. 1182–1189, 2006.
[14] Banerjee, T., Singh, S. B. & Srivastava, R. K., Development and performance evaluation of statistical models correlating air pollutants and meteorological variables at Pantnagar, India. Atmospheric Research, 99, pp. 505–517, Mar 2011.
[15] Brown, T., Dassonville, C., Derbez, M., Ramalho, O., Kirchner, S., Crump, D., et al., Relationships between socioeconomic and lifestyle factors and indoor air quality in French dwellings. Environmental Research, 140, pp. 385–396, 7// 2015.
[16] Diaz-de-Quijano, M., Joly, D., Gilbert, D. & Bernard, N., A more cost-effective geomatic approach to modelling PM10 dispersion across Europe. Applied Geography, 55, pp. 108–116, 12// 2014.
[17] Krivtsov, V., Howarth, M. J. & Jones, S. E., Characterising observed patterns of suspended particulate matter and relationships with oceanographic and meteorological variables: Studies in Liverpool Bay. Environmental Modelling & Software, 24, pp. 677–685, Jun 2009.
[18] H. Zou and T. Hastie, “Regularization and variable selection via the elastic net,” Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol. 67, pp. 301–320, 2005.
[19] Simons, K., De Smedt, T., Van Nieuwenhuyse, A., Buyl, R. & Coomans, D., Ensemble post-processing is a promising method to obtain flexible distributed lag models. Air Quality, Atmosphere & Health, pp. 1–12, 2016.
[20] Suleiman, A., Tight, M. R. & Quinn, A. D. Hybrid Neural Networks and Boosted Regression Tree Models for Predicting Roadside Particulate Matter. Environmental Modeling & Assessment, pp. 1–20, 2016.
[21] Fouskakis, D. & Draper, D., Stochastic optimization: a review. International Statistical Review, 70, pp. 315–349, 2002.
[23] R Development Core Team, “R 3.2. 1,” ed: R Project for Statistical Computing Vienna, Austria, 2015.
[24] Lin, S.-W., Tseng, T.-Y., Chou, S.-Y., & Chen, S.-C., A simulated-annealing-based approach for simultaneous parameter optimization and feature selection of back-propagation networks. Expert Systems with Applications, 34, pp. 1491–1499, 2// 2008.
[25] Breiman, L., Random forests. Machine learning, 45, pp. 5–32, 2001.
[26] Carslaw, D. C. & Ropkins, K., openair — An R package for air quality data analysis. Environmental Modelling & Software, 27–28, pp. 52–61, 2012.