[1] Sheng, N. & Tang, U.W., Risk assessment of traffic-related air pollution in a world heritage city. International Journal of Environmental Science and Technology, 10(1), pp. 11–18, 2013.
[2] Statistics and Census Service (DSEC), Macao in Figures. Available at http://www.dsec.gov.mo/Statistic.aspx?NodeGuid=ba1a4eab-213a-48a3-8fbb-962d15dc6f87, 2018 (accessed 1 March 2019).
[3] United States Environmental Protection Agency (USEPA), Particle Pollution and Your Health. Available at https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P1001EX6.txt, (accessed 1 March 2019).
[4] World Health Organization (WHO), Health Aspects of Air Pollution with Particulate Matter, Ozone and Nitrogen Dioxide. Available at http://www.euro.who.int/__data/assets/pdf_file/0005/112199/E79097.pdf, (accessed 1 March 2019).
[5] Ministry of Ecology and Environment (MEE), Ambient Air Quality Standards. Available at http://210.72.1.216:8080/gzaqi/Document/gjzlbz.pdf, (accessed 1 March 2019).
[6] Krzyzanowski, M. & Cohen, A., Update of WHO air quality guidelines. pp. 7–13, 2008.
[7] World Health Organization (WHO), Air Quality Guidelines. Available at http://202.171.253.71/www.euro.who.int/__data/assets/pdf_file/0005/78638/E90038.pdf, (accessed 1 March 2019).
[8] World Health Organization (WHO), WHO Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide. Available at http://202.171.253.72/apps.who.int/iris/bitstream/handle/10665/69477/WHO_SDE_PHE_OEH_06.02_eng.pdf?sequence=1&isAllowed=y, (accessed 1 March 2019).
[9] World Health Organization (WHO), Evolution of WHO Air Quality Guidelines: Past, Present and Future. Available at http://202.171.253.69/www.euro.who.int/__data/assets/pdf_file/0019/331660/Evolution-air-quality.pdf, (accessed 1 March 2019).
[10] World Health Organization (WHO), WHO Expert Consultation : Available Evidence for the Future Update of the WHO Global Air Quality Guidelines (AQG). Available at http://202.171.253.66/www.euro.who.int/__data/assets/pdf_file/0013/301720/Evidencefuture-update-AQGs-mtg-report-Bonn-sept-oct-15.pdf, (accessed 1 March 2019).
[11] Macao Meteorological and Geophysical Bureau (SMG), Resumo anual sobre qualidade do ar em Macau – 2017. Available at http://www.smg.gov.mo/smg/airQuality/pdf/IQA_2017_PT.pdf, (accessed 1 March 2019).
[12] Lopes, D., Ferreira, J., Hoi, K.I., Miranda, A.I., Yuen, K.V. & Mok, K.M., Weather research and forecasting model simulations over the Pearl River Delta Region. Air Quality, Atmosphere and Health, pp. 115–125, 2018.
[13] Lopes, D., Hoi, K.I., Mok, K.M., Miranda, A.I., Yuen, K.V. & Borrego, C., Air quality in the main cities of the Pearl River Delta Region. Global Nest Journal, 18(4), pp. 794–802, 2016.
[14] He, D., Zhou, Z., He, K., Hao, J., Liu, Y., Wang, Z. & Deng, Y., Assessment of traffic related air pollution in urban areas of Macao. Journal of Environmental Sciences, 12(1), pp. 39–46, 2000.
[15] Ferreira, F.C., Torres, P.M., Tente, H.S. & Neto, J.B., Ozone levels in Portugal: the Lisbon region assessment, 2004.
[16] Clapp, L.J. & Jenkin, M.E., Analysis of the relationship between ambient levels of O3, NO2 and NO as a function of NOx in the UK. Atmospheric Environment, 35(36), pp. 6391–6405, 2001.
[17] Ferreira, F., Tente, H., Torres, P., Cardoso, S. & Palma-Oliveira, J., Air quality monitoring and management in Lisbon. Environmental Monitoring and Assessment, 65, pp. 443–450, 2000.
[18] Neto, J., Ferreira, F., Torres, P.M. & Boavida, F., Lisbon air quality forecast using statistical methods. International Jounral of Environment Pollution, 39(3), pp. 333–340, 2009.
[19] Wang, W., Lu, W., Wang, X. & Leung A.Y.T., Prediction of maximum daily ozone level using combined neural network and statistical characteristics. Environment International, 29(5), pp. 555–562, 2003.
[20] European Centre for Medium-Range Weather Forecasts (ECMWF), User Guide to ECMWF Forecast Products, Version 4.0. Available at https://www.uio.no/studier/emner/matnat/geofag/nedlagte-emner/GEF4220/v09/undervisningsmateriale/Persson_user_guide.pdf, (accessed 1 March 2019).
[21] Choi, W., Paulson, S.E., Casmassi, J. & Winer, A.M., Evaluating meteorological comparability in air quality studies: classification and regression trees for primary pollutants in California’s South Coast Air Basin. Atmospheric Environment, 64, pp. 150–159, 2013.
[22] United States Environmental Protection Agency (USEPA), Guidelines for Developing an Air Quality (Ozone and PM2.5) Forecasting Program. Available at http://infohawk.uiowa.edu/F/19FJHSI1VLLSQ1YJQLQ7SK1BIG4QCC5N92I2J7Y3LIFRT6CDFN-03298?func=full-set-set&set_number=002362&set_entry=000004&format=999, (accessed 1 March 2019).
[23] Cassmassi, J.C., Objective ozone forecasting in south coast air basin: updating the objective prediction models for the late 1990’s and Southern California ozone study (SCOS97-NARSTO) applications, 1997.
[24] Oduro, S.D, Ha, Q.P. & Duc, H., Vehicular emissions prediction with CART-BMARS hybrid models. Transportation Research Part D: Transport and Environment, 49, pp. 188–202, 2016.
[25] Durão, R.M., Mendes, M.T. & Pereira, M.J., Forecasting O3 levels in industrial area surroundings up to 24 h in advance, combining classification trees and MLP models. Atmospheric Pollution Research, 7, pp. 961–970, 2016.