[1] Gururajan, K. & Belur, P.D., Screening and selection of indigenous metal tolerant fungal isolates for heavy metal removal. Environmental Technology Innovation, 9, pp. 91–99, 2018.
[2] Majumder, S., Gangadhar, G., Raghuvanshi, S. & Gupta, S., Biofilter column for removal of divalent copper from aqueous solutions: Performance evaluation and kinetic modeling. Journal Water Processing Engineering, 6, pp. 136–143, 2015.
[3] Sumathi, K.M.S., Mahimairaja, S. & Naidu, R., Use of low-cost biological wastes and vermiculite for removal of chromium from tannery effluent. Bioresource Technology, 96(3), pp. 309–316, 2005.
[4] Suwalsky, M., Castro, R.,Villena, F. & Sotomayor, C.P., Cr(III) exerts stronger structural effects than Cr(VI) on the human erythrocyte membrane and molecular models. Journal of Inorganic Biochemistry, 102(4), pp. 842–849, 2008.
[5] Mclean, J. & Beveridge, T.J., Chromate Reduction by a Pseudomonad Isolated from a Site Contaminated with Chromated Copper Arsenate Chromate Reduction by a Pseudomonad Isolated from a Site Contaminated with Chromated Copper Arsenate Downloaded from http://aem.asm.org/ on February 7 , 2. Society, 67(3), pp. 1076–1084, 2001.
[6] Mack, C., Wilhelmi, B., Duncan, J.R. & Burgess, J.E., Biosorption of precious metals. Biotechnology Advances, 25(3), pp. 264–271, 2007.
[7] Mendoza-Hernández, J.C. et al., Biosorción de cromo, arsénico y plomo de soluciones acuosas por cultivos bacterianos en suspensión. Revista Latinoamericana el Ambient y las Ciencias, 1(2), pp. 67–73, 2010.
[8] Mondal, M. et al., Multi-metal resistance and plant growth promotion potential of a wastewater bacterium Pseudomonas aeruginosa and its synergistic benefits. Environmental Geochemistry and Health, 39(6), pp. 1583–1593, 2017.
[9] GoldCorp Inc., Peñasquito – Overview & Operating Highlights. 2017.
[10] Cañizares, R.O., Biosorción de metales pesados mediante el uso de biomasa microbiana. Revista Latinoamericana Microbiology, 42(3), pp. 131–143, 2000.
[11] Singh, R., Paul, D. & Jain, R.K., Biofilms: implications in bioremediation. Trends Microbiology, 14(9), pp. 389–397, 2006.
[12] Vazquez, L. et al., Immobilized microorganisms in the reduction of ethyl benzoylacetate. Tetrahedron Letter, 50(52), pp. 7362–7364, 2009.
[13] Boeris, P.S., Liffourrena, A.S. & Lucchesi G.I., Aluminum biosorption using non-viable biomass of Pseudomonas putida immobilized in agar–agar: Performance in batch and in fixed-bed column. Environnement Technology Innovation, 11, pp. 105–115, 2018.
[14] Bagde, P. & Vigneshwaran, N., Improving the stability of bacteriocin extracted from Enterococcus faecium by immobilization onto cellulose nanocrystals. Carbohydrate Polymers, 209, no. October 2018, pp. 172–180, 2019.
[15] Muñoz, A.J., Espínola, F. & Ruiz, E. Removal of Pb(II) in a packed-bed column by a Klebsiella sp. 3S1 biofilm supported on porous ceramic Raschig rings. Journal of Industrial and Engineering Chemistry, 40, pp. 118–127, 2016.
[16] Munagapati, V.S. & Kim, D.S., Equilibrium isotherms, kinetics, and thermodynamics studies for congo red adsorption using calcium alginate beads impregnated with nanogoethite. Ecotoxicology and Environment Safety, 141, no. August 2016, pp. 226–234, 2017.
[17] Apha, Water Environment Federation, and American Water Works Association, Standard Methods for the Examination of Water and Wastewater (Part 1000-3000). Standard Methods for the Examination of Water and Wastewater, p. 733, 1999.
[18] NMX, Norma Mexicana Nmx-Aa-051-Scfi-2016 Análisis De Agua . -Medición De Metales Por Absorción Atómica En Aguas Naturales , Método De Prueba ( Cancela a La Nmx-Aa-051-Scfi-2001 ). Water Analysis – Measurement of Metals By Atomic Absorption in Natural Waters. 2016.
[19] Calero, J., Sánchez, Y.F., Tórrez, R., Hernann, E. & López, K., Elaboración y caracterización de microcápsulas gastrorresistentes de diclofenac obtenidas por gelificación iónica. UNAN-León, Editor University, 1(2), pp. 27–30, 2008.
[20] Majumder, S., Raghuvanshi, S. & Gupta, S., Application of a hybrid biofilter column for the removal of Cr(VI) from aqueous solution using an indigenous bacterial strain Pseudomonas taiwanensis. Bioremediation Journal, 20(1), pp. 10–23, 2016.
[21] Majumder, S., Gangadhar, G., Raghuvanshi, S. & Gupta, S. Biofilter column for removal of divalent copper from aqueous solutions: Performance evaluation and kinetic modeling. Journal of Water Process Engineering, 6, pp. 136–143, 2015.
[22] Chakraborty, J., Mallick, S., Raj, R. & Das, S., Functionalization of extracellular polymers of Pseudomonas aeruginosa N6P6 for synthesis of CdS nanoparticles and cadmium bioadsorption. Journal of Polymers and the Environment, 26(7), pp. 3097–3108, 2018.
[23] Beyenal, N.Y., Özbelge, T.A. & Özbelge, H.Ö., Combined effects of Cu2+ and Zn2+ on activated sludge process. Water Research, 31(4), pp. 699–704, 1997.
[24] Gadd, G.M., Biosorption: Critical review of scientific rationale, environmental importance and significance for pollution treatment. Journal of Chemical Technology and Biotechnology, 84(1), pp. 13–28, 2009.
[25] Chojnacka, K. Biosorption and bioaccumulation - the prospects for practical applications. Environment International, 36(3), pp. 299–307, 2010.
[26] Muñoz, A.J. et al., Heavy metal tolerance of microorganisms isolated from wastewaters: Identification and evaluation of its potential for biosorption. Chemical Engineering Journal, 210, pp. 325–332, 2012.
[27] Malik, A., Metal bioremediation through growing cells. Environment International, 30(2), pp. 261–278, 2004.
[28] Mangwani, N., Shukla, S.K., Rao, T.S. & Das, S. Calcium-mediated modulation of Pseudomonas mendocina NR802 biofilm influences the phenanthrene degradation. Colloids Surfaces B Biointerfaces, 114, pp. 301–309, 2014.
[29] Verma, A., Kumar, S. & Kumar, S. Biosorption of lead ions from the aqueous solution by Sargassum filipendula: Equilibrium and kinetic studies. Journal Environmental Chemical Engineering, 4(4), pp. 4587–4599, 2016.
[30] Loutseti, S., Danielidis, D. B., Economou-Amilli, A., Katsaros, C., Santas, R. & Santas, P. The application of a micro-algal/bacterial biofilter for the detoxification of copper and cadmium metal wastes. Bioresource Technology, 100(7), pp. 2099–2105, 2009.