Acadlore takes over the publication of IJCMEM from 2025 Vol. 13, No. 3. The preceding volumes were published under a CC BY 4.0 license by the previous owner, and displayed here as agreed between Acadlore and the previous owner. ✯ : This issue/volume is not published by Acadlore.
Influence of Burner Diameter on Premixed Flame Shape and Quenching
Abstract:
The quenching of a pre-mixed counter flame was studied experimentally, as described in this paper. Experimental research has been done on flames spreading in methane/air mixes in counter burners with various burner diameters. It has been determined how the counter burner diameter changes, the methane/air mixing ratio affects the flame burning velocity, and the quenching diameter. In this study, the quenching diameter was examined in relation to altering burner diameter (9, 12, 16, 19, and 23 mm) using a digital image processing technique. In counter flame, significant results were attained. The geometry of the burner edges and the air and fuel velocity have an impact on the quenching diameter in the counter flow. The top and bottom flame disc quenching diameters are nearly equal for both lean and rich combinations and grow with the burner diameter. The values of the quenching distance were smaller than the quenching diameter at the wide range of the equivalence ratio (0.46 < φ < 1.57) for mixtures, and this behavior was likely caused by the dead space.
