[1] Hromadka II, T. & Guymon, G., Application of a boundary integral equation to predic- tion of freezing fronts in soil. Cold Regions Science and Technology, 6, pp. 115–121, 1982. [Crossref] [2] Hromadka II, T. V. & Guymon, G. L., A complex variable boundary element method: development. International Journal for Numerical Methods in Engineering, 20, pp. 25–37, 1984. [Crossref] [3] Hromadka II, T. V. & Guymon, G. L., The complex variable boundary element method. International Journal of Numerical Methods Engineering, 1984.
[4] Johnson, A. N., Hromadka II, T. V., Hughes, M. T. & Horton, S. B., Modeling mixed boundary problems with the complex variable boundary element method (CVBEM) using matlab and mathematica. International Journal of Computational Methods and Experimental Measurements, 3(3), pp. 269–278, 2015. v3-n3-269-278 [Crossref] [5] Wilkins, B. D., Hromadka II, T. V., Johnson, A. N., Boucher, R., McInvale, H. D. & Hor- ton, S., Assessment of complex variable basis functions in the approximation of ideal fluid flow problems. International Journal of Computational Methods and Experimen- tal Measurements, 7(1), pp. 45–56, 2019. [Crossref] [6] Wilkins, B. D. & Hromadka II, T. V., Using the digamma function for basis functions in mesh-free computational methods. Engineering Analysis with Boundary Elements, 2021 (in press).
[7] Demoes, N. J., Bann, G. T., Wilkins, B. D., Grubaugh, K. E. & Hromadka II, T. V., Optimization algorithm for locating computational nodal points in the method of fun- damental solutions to improve computational accuracy in geosciences modelling. The Professional Geologist, 2019.
[8] Wilkins, B. D., Hromadka II, T. V. & McInvale, J., Comparison of two algorithms for locating computational nodes in the complex variable boundary element method (CVBEM). International Journal of Computational Methods and Experimental Mea- surements, 8(4), 2020.
[9] Demoes, N. J., Bann, G. T., Wilkins, B. D., Hromadka II, T. V. & Boucher, R., 35 years of advancements with the complex variable boundary element method. International Journal of Computational Methods and Experimental Measurements, 7(1), pp. 1–13, 2018. [Crossref] [10] Wilkins, B. D., Greenberg, J., Redmond, B., Baily, A., Flowerday, N., Kratch, A., Hro- madka II, T. V., Boucher, R., McInvale, H. D. & Horton, S., An unsteady two-dimen- sional complex variable boundary element method. SCIRP Applied Mathematics, 8(6), pp. 878–891, 2017. [Crossref] [11] Johnson, A. N. & Hromadka II, T. V., Modeling mixed boundary conditions in a Hilbert space with the complex variable boundary element method (CVBEM). MethodsX, 2, pp. 292–305, 2015. [Crossref] [12] Tikhonov, A., On the stability of inverse problems. In Proceedings of the USSR Acad- emy of Sciences, 1943.
[13] Tikhonov, A., Solution of incorrectly formulated problems and the regularization method. Soviet Mathematics Doklady, 4, pp. 1035–1038, 1963. https://doi.org/10.1134/ s1064562418030250
[14] Hromadka II, T. V., Linking the complex variable boundary-element method to the analytic function method. Numerical Heat Transfer, 7, pp. 235–240, 1984. https://doi. org/10.1080/01495728408961822
[15] Kirchhoff, R. H., Potential Flows Computer Graphic Solutions, CRC Press, 1985.