[1] Vullo, V., Gears. Springer International Publishing, 2020.
[2] Concli, F., Cortese, L., Vidoni, R., Nalli, F. & Carabin, G., A mixed FEM and lumped- parameter dynamic model for evaluating the modal properties of planetary gearboxes. Journal of Mechanical Science and Technology, 32(7), pp. 3047-3056, 2018. https:// doi.org/10.1007/s12206-018-0607-9
[3] Blake, J.W. & Cheng, H.S., A surface pitting life model for spur gears: Part I—Life prediction. J. Tribol, 113, pp. 712–718, 1991. [Crossref] [4] Wu, S. & Cheng, H.S., Sliding wear calculation in spur gears. J. Tribol, 115, pp. 493–500, 1993. [Crossref] [5] Li, S. & Kahraman, A., A scuffing model for spur gear contacts. Mechanism and Machine Theory, 156, p. 104161, 2021. [Crossref] [6] Liu, H., Liu, H., Zhu, C. & Zhou, Y., A review on micropitting studies of steel gears. Coatings, 9(1), p. 42, 2019. [Crossref] [7] Fernandes, P.J.L., Tooth bending fatigue failures in gears. Engineering Failure Analy- sis, 3(3), pp. 219–225, 1996. [Crossref] [8] Hong, I.J., Kahraman, A. & Anderson, N., A rotating gear test methodology for evalu- ation of high-cycle tooth bending fatigue lives under fully reversed and fully released loading conditions. International Journal of Fatigue, 133, p. 105432, 2020. https://doi. org/10.1016/j.ijfatigue.2019.105432
[9] Pantazopoulos, G.A., Bending fatigue failure of a helical pinion bevel gear. Journal of Failure Analysis and Prevention, 15(2), pp. 219–226, 2015. https://doi.org/10.1007/ s11668-015-9947-2
[10] Bretl, N., Schurer, S., Tobie, T., Stahl, K. & Höhn, B.R., Investigations on tooth root bending strength of case hardened gears in the range of high cycle fatigue. In American Gear Manufacturers Association Fall Technical Meeting, pp. 103–118, 2013.
[11] ISO 6336-3:2006, Calculation of Load Capacity of Spur and Helical Gears, Part 3: Calculation of Tooth Bending Strength. Standard, Geneva, CH, 2006.
[12] ANSI/AGMA 2001-D04, Fundamental Rating Factors and Calculation Methods for Involute Spur and Helical Gear Teeth. American Gear Manufacturers Association, Alexandria, 2004.
[13] Rao, S.B. & McPherson, D.R., Experimental characterization of bending fatigue strength in gear teeth. Gear Technology, 20(1), pp. 25–32, 2003.
[14] Benedetti, M., Fontanari, V., Höhn, B.R., Oster, P. & Tobie, T., Influence of shot peening on bending tooth fatigue limit of case hardened gears. International Journal of Fatigue, 24(11), pp. 1127–1136, 2002. [Crossref] [15] McPherson, D.R. & Rao, S.B., Methodology for translating single-tooth bending fatigue data to be comparable to running gear data. Gear Technology, 42–51, 2008.
[16] Dobler, D.I.A., Hergesell, I.M. & Stahl, I.K., Increased tooth bending strength and pit- ting load capacity of fine-module gears. Gear Technology, 33(7), pp. 48–53, 2016.
[17] Concli, F., Tooth root bending strength of gears: dimensional effect for small gears hav- ing a module below 5 mm. Applied Science, 11, p. 2416, 2021. https://doi.org/10.3390/ app11052416
[18] Gorla, C., Conrado, E., Rosa, F. & Concli, F., Contact and bending fatigue behaviour of austempered ductile iron gears. Proceedings of the Institution of Mechanical Engi- neers, Part C: Journal of Mechanical Engineering Science, 232(6), pp. 998–1008, 2018. [Crossref] [19] McPherson, D.R. & Rao, S.B., Mechanical Testing of Gears. Materials Park, OH: ASM International, 2000, pp. 861–872.
[20] Concli, F., Fraccaroli, L. & Maccioni, L., Gear root bending strength: A new multiaxial approach to translate the results of single tooth bending fatigue tests to meshing gears. Metals, 11(6), p. 863, 2021. [Crossref] [21] Concli, F., Maccioni, L., Fraccaroli, L. & Cappellini, C., Effect of gear design param- eters on stress histories induced by different tooth bending fatigue tests: a numerical- statistical investigation. Applied Sciences, 12(8), p. 3950, 2022. https://doi.org/10.3390/ app12083950
[22] Rettig, H., Ermittlung von Zahnfußfestigkeitskennwerten auf Verspannungsprüfständen und Pulsatoren-Vergleich der Prüfverfahren und der gewonnenen Kennwerte. Antrieb- stechnik, 26, pp. 51–55, 1987.
[23] Stahl, K., Lebensdauer Statistik: Abschlussbericht, Forschungsvorhaben nr. 304. Tech. Rep. 580, 1999.
[24] Concli, F., Austempered Ductile Iron (ADI) for gears: Contact and bending fatigue behavior. Procedia Structural Integrity, 8, pp. 14–23, 2018. prostr.2017.12.003 [Crossref] [25] Bonaiti, L., Concli, F., Gorla, C. & Rosa, F., Bending fatigue behaviour of 17-4 PH gears produced via selective laser melting. Procedia Structural Integrity, 24, pp. 764–774, 2019. [Crossref] [26] Gasparini, G., Mariani, U., Gorla, C., Filippini, M. & Rosa, F., Bending 367 Fatigue Tests of Helicopter Case Carburized Gears: Influence of Material, Design 368 and Manufacturing Parameters. In AGMA (Ed.), American Gear Manufacturers Associa- tion 369 (AGMA) Fall Technical Meeting, 2008, pp. 131–142.
[27] Gorla, C., Rosa, F., Concli, F. & Albertini, H., Bending fatigue strength of innova- tive gear materials for wind turbines gearboxes: Effect of surface coatings. In ASME International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012, Vol. 45233, pp. 3141–3147. https://doi.org/10.1115/ IMECE2012-86513
[28] Gorla, C., Rosa, F., Conrado, E. & Concli, F., Bending fatigue strength of case carbu- rized and nitrided gear steels for aeronautical applications. International Journal of Applied Engineering Research, 12(21), pp. 11306–11322, 2017.
[29] Rao, S.B., Schwanger, V., McPherson, D.R. & Rudd, C., Measurement and validation of dynamic bending stresses in spur gear teeth. In International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2005, Vol. 4742, pp. 755–764. [Crossref] [30] Wagner, M., Isaacson, A., Knox, K. & Hylton, T., Single tooth bending fatigue testing at any r ratio. In 2020 AGMA/ABMA Annual Meeting. AGMA American Gear Manu- facturers Association, 2020.
[31] Bonaiti, L., Bayoumi, A.B.M., Concli, F., Rosa, F. & Gorla, C., Gear root bending strength: a comparison between Single Tooth Bending Fatigue Tests and meshing gears. Journal of Mechanical Design, pp. 1–17, 2021. [Crossref] [32] Hong, I., Teaford, Z. & Kahraman, A., A comparison of gear tooth bending fatigue lives from single tooth bending and rotating gear tests. Forschung im Ingenieurwesen, pp. 1–13, 2021. [Crossref] [33] Conrado, E., Gorla, C., Davoli, P. & Boniardi, M., A comparison of bending fatigue strength of carburized and nitrided gears for industrial applications. Engineering Fail- ure Analysis, 78, pp. 41–54, 2017. [Crossref] [34] Savaria, V., Bridier, F. & Bocher, P., Predicting the effects of material properties gradient and residual stresses on the bending fatigue strength of induction hardened aeronautical gears. International Journal of Fatigue, 85, pp. 70–84, 2016. ijfatigue.2015.12.004 [Crossref] [35] Crossland, B., Effect of large hydrostatic pressures on the torsional fatigue strength of an alloy steel. In Proc. Int. Conf. on Fatigue of Metals. Institution of Mechanical Engi- neers London, 1956, Vol. 138, pp. 12–12.
[36] Hotait, M.A. & Kahraman, A., Estimation of bending fatigue life of hypoid gears using a multiaxial fatigue criterion. Journal of Mechanical Design, 135(10), p. 101005, 2013. [Crossref] [37] Liu, Y. & Mahadevan, S., A unified multiaxial fatigue damage model for isotropic and anisotropic materials. International Journal of Fatigue, 29(2), pp. 347–359, 2007. [Crossref] [38] Findley, W.N., A theory for the effect of mean stress on fatigue of metals under com- bined torsion and axial load or bending. Journal of Engineering for Industry, 81(4), pp. 301–305. [Crossref] [39] Concli, F., Maccioni, L. & Bonaiti, L., Reliable gear design: Translation of the results of single tooth bending fatigue tests through the combination of numerical simulations and fatigue criteria. Wit Transactions on Engineering Sciences, 130, pp. 111–122, 2021. [Crossref] [40] Matake, T., An explanation on fatigue limit under combined stress. Bulletin of JSME, 20(141), pp. 257–263, 1977. [Crossref] [41] McDiarmid, D.L., Fatigue under out-of-phase biaxial stresses of different frequencies. In Multiaxial Fatigue. ASTM International, 1985. [Crossref] [42] Papadopoulos, I.V., A high cycle fatigue criterion applied in biaxial and triaxial out- of-phase stress conditions. Fatigue & Fracture of Engineering Materials & Structures, 18(1), pp. 79–91, 1995. [Crossref] [43] Susmel, L., Tovo, R. & Lazzarin, P., The mean stress effect on the high-cycle fatigue strength from a multiaxial fatigue point of view. International Journal of Fatigue, 27(8), pp. 928–943, 2005. [Crossref] [44] Concli, F., Maccioni, L., Fraccaroli, L. & Bonaiti, L., Early crack propagation in sin- gle tooth bending fatigue: Combination of finite element analysis and critical-planes fatigue criteria. Metals, 11(11), p. 1871, 2021. [Crossref] [45] Karolczuk, A. & Papuga, J., Recent progress in the application of multiaxial fatigue cri- teria to lifetime calculations. Procedia Structural Integrity, 23, pp. 69–76, 2019. https:// Doi.Org/10.1016/J.Prostr.2020.01.065
[46] Concli, F. & Maccioni, L., Critical planes criteria applied to gear teeth: Which one is the most appropriate to characterize crack propagation. WIT Trans. Eng. Sci, 133, pp. 15–25, 2021. [Crossref] [47] Papadopoulos, I.V., Critical plane approaches in high-cycle fatigue: on the definition of the amplitude and mean value of the shear stress acting on the critical plane. Fatigue & Fracture of Engineering Materials & Structures, 21(3), pp. 269–285, 1998. https://doi. org/10.1046/j.1460-2695.1998.00459.x
[48] Susmel, L., On the overall accuracy of the Modified Wöhler Curve Method in estimat- ing high-cycle multiaxial fatigue strength. Frattura ed Integrita Strutturale, 5(16), pp. 5–17, 2011. [Crossref]