[1] Oliveira, H.L. and Leonel, E.D., Constitutive relation error formalism applied to the solution of inverse problems using the BEM. Engineering Analysis with Boundary Ele- ments, 108, pp. 30–40, 2019.
[2] Rasheed, A., San, O. & Kvamsdal, T., Digital twin: Values, challenges and enablers. arXiv preprint arXiv:1910.01719. 2019.
[3] Barricelli, B.R., Casiraghi, E. & Fogli, D. A survey on digital twin: Definitions, char- acteristics, applications, and design implications. IEEE Access, 7(Ml), pp. 167653– 167671, 2019. [Crossref] [4] Wright, L. & Davidson, S. How to tell the difference between a model and a digital twin. Advanced Modeling and Simulation in Engineering Sciences, 7(1), pp. 1–3, 2020. [Crossref] [5] Chinesta, F., Cueto, E., Abisset-Chavanne, E., Duval, J.L. & El Khaldi, F., Virtual, digi- tal and hybrid twins: a new paradigm in data-based engineering and engineered data. Archives of computational methods in engineering, 27(1), pp. 105–134, 2020.
[6] Abdelmegid, M.A., González, V.A., O’Sullivan, M., Walker, C.G., Poshdar, M. & Ying, F., The roles of conceptual modelling in improving construction simulation studies: A comprehensive review. Advanced Engineering Informatics, 46. https://doi. org/10.1016/j.aei.2020.101175 [Crossref] [7] Robinson, S., Arbez, G., Birta, L.G., Tolk, A. & Wagner, G., Conceptual modeling: definition, purpose and benefits. In 2015 Winter Simulation Conference (WSC) (pp. 2812–2826). IEEE, 2015.
[8] Brynjarsdóttir, J. & O’Hagan, A. Learning about physical parameters: The impor- tance of model discrepancy. Inverse Problems, 30(11), p. 114007, 2014. https://doi. org/10.1088/0266-5611/30/11/114007
[9] Law, A.M., Kelton, W.D. & Kelton, W.D., Simulation Modeling and Analysis. New York: McGraw-Hill; 2000.
[10] Papalambros, P.Y. & Wilde, D.J., Principles of Optimal Design: Modeling and Compu- tation. Cambridge University Press, 2000.
[11] Venter, G., Review of optimization techniques. Encyclopedia of Aerospace Engineer- ing. 2010.
[12] Whitley, D., Rana, S., Dzubera, J. & Mathias, K.E., Evaluating evolutionary algorithms. Artificial Intelligence, 85(1–2), pp. 245–276, 1996. 3702(95)00124-7 [Crossref] [13] Han, Z.H. & Zhang, K.S., Surrogate-based optimization. Real-World Applications of Genetic Algorithms, 7, p. 343, 2012.
[14] Boschert, S. & Rosen, R., Digital twin—the simulation aspect. In Mechatronic Futures (pp. 59–74). Springer, Cham, 2016.
[15] Schleich, B., Answer, N., Mathieu, L. & Wartzack, S., Shaping the digital twin for design and production engineering. CIRP Annals, 66(1), pp. 141–144, 2017. https://doi. org/10.1016/j.cirp.2017.04.040
[16] Tuegel, E.J., Ingraffea, A.R. Eason, T.G. & Spottswood, S.M., Reengineering aircraft structural life prediction using a digital twin. International Journal of Aerospace Engi- neering, 2011, 2011.
[17] Giunta, A., Wojtkiewicz, S. & Eldred, M., Overview of modern design of experiments methods for computational simulations. In 41st Aerospace Sciences Meeting and Exhibit (p. 649). 2003.
[18] Rajaram, D., Methods for Construction of Surrogates For Computationally Expensive High-Dimensional Problems (Doctoral dissertation, Georgia Institute of Technology) 2020.
[19] Sapkota, M.S., Apeh, E., Hadfield, M., Adey, R. & Baynham, J., Design of experiments platform for online simulation model validation and parameter updating within digital twinning. WIT Transactions on Engineering Sciences, 130, pp. 3–14, 2020.
[20] Bezerra, M.A., Santelli, R.E., Oliveira, E.P., Villar, L.S. & Escaleira, L.A., Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76(5), pp. 965–977, 2008.
[21] Myers, R.H., Montgomery, D.C. & Anderson-Cook, C.M., Response Surface Method- ology: Process and Product Optimization Using Designed Experiments. John Wiley & Sons; 2016.
[22] MATLAB and Statistics Toolbox Release, TheMathWorks, Inc., Natick, Massachusetts, United States, 2012b.
[23] Adey, R.A., Modelling of Cathodic Protection Systems. United Kingdom, WIT, 2006.
[24] Adey, R., Peratta, C. & Baynham, J., Corrosion Data Management Using 3D Visualisa- tion and a Digital Twin. In NACE International Corrosion Conference Proceedings (pp. 1–13). NACE International, 2020.
[25] Alizadeh, R., Allen, J.K. & Mistree, F., Managing computational complexity using sur- rogate models: a critical review. Research in Engineering Design, 31(3), pp. 275–298, 2020. [Crossref] [26] Montgomery, D.C. Design and Analysis of Experiments. John Wiley & Sons, 2017.