1.
Podgórni, E. & Rząsa, R.M., Investigation of the effects of salinity and temperature on the removal of iron from water by aeration, filtration and coagulation. Polish Jour- nal of Environmental Studies, 23(6), pp. 2157–2161, 2014. https://doi.org/10.15244/ pjoes/24927
2.
Shannon, M.A., Bohn, P.W., Elimelech, M., Georgiadis, J.G., Marinas, B.J. & Mayes, A.M., Science and technology for water purification in the coming decades. Nature, 452, pp. 301–310, 2008.
3.
Tzoupanos, N.D. & Zouboulis, A.J., Coagulation-flocculation processes in water/waste water treatment: The application of new generation of chemical reagents, 6th IASME/ WSEAS International Conference on HEAT TRANSFER, THERMAL ENGINEERING and ENVIRONMENT (HTE’08) Rhodes, Greece, August 20–22, 2008.
4.
Rosendahl, L., Using a multi-parameter particle shape description to predict the motion of non-spherical particle shapes in swirling flow. Applied Mathematical Modelling, 24(1), pp. 11–25, 2000. [Crossref] 5.
Sümer, M., Helvaci, P. & Helvaci Ş.Ş., Solid-Liquid Two Phase Flow, Elsevier, 2008.
6.
Sharma, M., Gupta, M. & Katy, P., A review on viscosity of nanofluids. International Journal of Management, Technology And Engineering, 8(9), pp. 1413–1425, 2018.
7.
Barnea, E. & Mizrahi, J., A generalized approach to the fluid dynamics of particulate systems. Part I. General correlation for fluidization and sedimentation in solid multipar- ticle systems. The Chemical Engineering Journal, 5(2), pp. 171–189, 1973. https://doi. org/10.1016/0300-9467(73)80008-5
8.
Hashin, Z. & Shtrikman, S., A variational approach to the theory of the elastic behav- iour of multiphase. Journal of the Mechanics and Physics of Solids, 11(2), pp. 127–140, 1963. [Crossref] 9.
Happel, J. & Epstein, N., Viscous flow in multiparticle systems: cubical assemblage of uniform spheres. Industrial & Engineering Chemistry, 46, pp. 1187–1194, 1954.
10.
Kelbaliyev, G. & Ceylan, K., Development of new empirical equations for estimation of drag coefficient, shape deformation, and rising velocity of gas bubbles or liquid drops. Chemical Engineering Communications, 194, pp. 1623–1637, 2007. https://doi. org/10.1080/00986440701446128
11.
Rosendahl, L., Using a multi-parameter particle shape description to predict the motion of non-spherical particle shapes in swirling flow. Applied Mathematical Modelling, 24(1), pp. 11–25, 2000. [Crossref] 12.
Zastawny, M., Mallouppas, G., Zhao, F. & van Wachem, B., Derivation of drag and lift force and torque coefficients for non-spherical particles in flows. International Jour- nal of Multiphase Flow, 39, pp. 227–239, 2012. flow.2011.09.004 [Crossref] 13.
Hölzer, A. & Sommerfeld, M., New simple correlation formula for the drag coefficient of non-spherical particles. Powder Technology, 184(3), pp. 361–365, 2008. https://doi. org/10.1016/j.powtec.2007.08.021
14.
Maron, S.H. & Pierce, P.E., Application of Ree-Eyring generalized flow theory to sus- pensions of spherical particles. Journal of Colloid Science, 11(1), pp. 80–90, 1956. [Crossref] 15.
Sanjeevi, S.K.P., Kuipers, J.A.M. & Padding, J.T., Drag, lift and torque correlations for non-spherical particles from Stokes limit to high Reynolds numbers. International Journal of Multiphase Flow, 106, pp. 325–337, 2018. phaseflow.2018.05.011 [Crossref] 16.
Leva, M., Weintraub, M., Grummer, M., Pollchik, M. & Storch, H.H., Fluid Flow Through Packed and Fluidized Systems, Bulletin 504, Bureau of Mines, United States Government Office, Washington, 1951.
17.
Kozeny, J., Über kapillare Leitung des Wassers im Boden, Hölder-Pichler-Tempsky, A.-G. [Abt.] Akad. d. Wiss, Wiedeń, 1927.