[1] Valenta, R., Šejnoha, M. & Zeman, J., Macroscopic constitutive law for mastic asphalt mixtures from multiscale modeling. International Journal for Multiscale Computational Engineering, 8(1), pp. 131–149, 2010. v8.i1.100 [Crossref] [2] Valenta, R. & Šejnoha, M., Hierarchical modeling of mastic asphalt in layered road structures based on the Mori-Tanaka method. Acta Polytechnica, 52(6), pp. 48–58, 2012. [Crossref] [3] Dvorak, G.J. & Sejnoha, M., Initial failure maps for fibrous smc laminates. Journal of the American Ceramic Society, 78, pp. 205–210, 1995. [Crossref] [4] Dvorak, G.J. & Sejnoha, M., Initial failure maps for ceramic and metal matrix composites. Modelling Simul Mater Sci Eng, 4, pp. 553–580, 1996. [Crossref] [5] Zeman, J. & Šejnoha, M., Numerical evaluation of effective properties of graphite fiber tow impregnated by polymer matrix. Journal of the Mechanics and Physics of Solids, 49(1), pp. 69–90, 2001. [Crossref] [6] Šejnoha, M., Zeman, J. & Šejnoha, J., Evaluation of effective thermoelastic proper- ties of random fibrous composites. International Journal for Engineering Modelling, 13(3–4), pp. 61–68, 2000. [Crossref] [7] Šejnoha, M. & Zeman, J., Overall viscoelastic response of random fibrous composites with statistically quasi uniform distribution of reinforcements. Computer Methods in Applied Mechanics and Engineering, 191(44), pp. 5027–5044, 2002. https://doi. org/10.1016/s0045-7825(02)00433-4
[8] Kouznetsova, V., Geers, M.G.D. & Brekelmans, W.A.M., Multi-scale constitutive mod- elling of heterogeneous materials with a gradient-enhanced computational homogeni- zation scheme. International Journal for Numerical Methods in Engineering, 54(8), pp. 1235–1260, 2002. [Crossref] [9] Kanouté, P., Boso, D.P., Chaboche, J.L. & Schrefler, B.A., Multiscale methods for composites: A Review. Archives of Computational Methods in Engineering, 16(1), pp. 31–75, 2009. [Crossref] [10] Raju, K., Tay, T.E. & Tan, V.C.B., A review of the FE2 method for composites. Multiscale and Multidisciplinary Modeling, Experiments and Design, 2020.
[11] Sýkora, J., Krejčí, T., Kruis, J. & Šejnoha, M., Computational homogenization of non-stationary transport processes in masonry structures. Journal of Computational and Applied Mathematics, 236, pp. 4745–4755, 2012. cam.2012.02.031 [Crossref] [12] Krejčí, T., Kruis, J., Šejnoha, M. & KOudelka, T., Hybrid parallel approach to homogenization of transport processes in masonry. Advances in Engineering Software, 113, pp. 25–33, 2017. [Crossref] [13] Krejčí, T., Kruis, J., Šejnoha, M. & Koudelka, T., Hybrid parallel approach to homog- enization of transport processes in masonry. Computers and Mathematics with Applica- tions, 74, pp. 229–248, 2017. [Crossref] [14] Šejnoha, M. & Zeman, J., Micromechanics in Practice. WIT Press, Southampton, Bos- ton, 2013.
[15] Benveniste, Y., A new approach to the application of Mori-Tanaka theory in composite materials. Mechanics of Materials, 6, pp. 147–157, 1987. 6636(87)90005-6 [Crossref] [16] Dvorak, G.J., Transformation field analysis of inelastic composite materials. Proceed- ings of the Royal Society of London Series A - Mathematical, Physical and Engineering Sciences, 437(1900), pp. 311–327, 1992. [Crossref] [17] Dvorak, G.J. & Benveniste, Y., On transformation strains and uniform fields in mul- tiphase elastic media. Proceedings of the Royal Society of London Series A - Math- ematical, Physical and Engineering Sciences, 437(1900), pp. 291–310, 1992. https:// doi.org/10.1098/rspa.1992.0062
[18] Dvorak, G.J., A., B.E.D.Y. & Wafa, A.M., Implementation of the transformation field analysis for inelastic composite-materials. Computational Mechanics, 14(3), pp. 201– 228, 1994. [Crossref] [19] Masson, R., Bornert, M., Suquet, P. & Zaoui, A., An affine formulation for the predic- tion of the effective properties of nonlinear composites and polycrystals. Journal of the Mechanics and Physics of Solids, 48, pp. 1203–1227, 2000. https://doi.org/10.1016/ s0022-5096(99)00071-x
[20] Šejnoha, M., Valenta, R. & Zeman, J., Nonlinear viscoelastic analysis of statistically homogeneous random composites. International Journal for Multiscale Computa- tional Engineering, 2(4), pp. 645–673, 2004. v2.i4.80 [Crossref] [21] Valentová, S., Šejnoha, M., Vorel, J., Sedláček, R. & Padevět, P., Application of the mori-tanaka method to describe the rate-dependent behavior of unidirectional fibrous composites. Acta Polytechnica CTU Proceedings, 2021. In print.
[22] Michel, J.C., Moulinec, H. & Suquet, P., Effective properties of composite materials with periodic microstructure: A computational approach. Computer Methods in Applied Mechanics and Engineering, 172, pp. 109–143, 1999. 7825(98)00227-8 [Crossref] [23] Tervoort, T.A., Constitutive modeling of polymer glasses: Finite, nonlinear visocelastic behaviour of polycarbonate. Ph.D. thesis, Eindhoven University of Technology, Eind- hoven, 1996.
[24] Vorel, J., Grippon, E. & Šejnoha, M., Effective thermoelastic properties of polysilox- ane matrix-based plain weave textile composites. International Journal for Multiscale Computational Engineering, 13(3), pp. 181–200, 2014. multcompeng.2014011020 [Crossref]