[1] Choi, J., Strategy for reducing carbon dioxide emissions from maintenance and rehabilitation of highway pavement. Journal of Cleaner Production, 209, pp. 88–100, 2019. [Crossref] [2] Huang, M., Zhang, X., Ren, R., Liao, H., Zavadskas, E.K. & Antucheviciene, J., Energy-saving building program evaluation with an integrated method under linguistic environment. Journal of Civil Engineering and Management, 26(5), pp. 447–458, 2020. [Crossref] [3] Kyriacou, A., Muinelo-Gallo, L. & Roca-Sagalés, O., The efficiency of transport infrastructure investment and the role of government quality: An empirical analysis. Transport Policy, 74, pp. 93–102, 2019. [Crossref] [4] Payá-Zaforteza, I., Yepes, V., González-Vidosa, F. & Hospitaler, A., On the Weibull cost estimation of building frames designed by simulated annealing. Meccanica, 45(5), pp. 693–704, 2010. [Crossref] [5] Hasan, M.A., Yan, K., Akiyama, M. & Frangopol, D.M., LCC-based identification of geographical locations suitable for using stainless steel rebars in reinforced concrete girder bridges. Structure and Infrastructure Engineering, 16(9), pp. 1201–1227, 2020. [Crossref] [6] Molina-Moreno, F., García-Segura, T., Martí, J.V. & Yepes, V., Optimization of but- tressed earth-retaining walls using hybrid harmony search algorithms. Engineering Structures, 134, pp. 205–216, 2017. [Crossref] [7] Navarro, I.J., Martí, J.V. & Yepes, V., Reliability-based maintenance optimization of corrosion preventive designs under a life cycle perspective. Environmental Impact Assessment Review, 74, pp. 23–34, 2019. [Crossref] [8] Xin, J., Akitama, M., Frangopol, D.M., Zhang, M., Pei, J. & Zhang, J., Reliability- based life-cycle cost design of asphalt pavement using artificial neural networks. Structure and Infrastructure Engineering, 2020.
[9] Molina-Moreno, F., Martí, J.V. & Yepes, V., Carbon embodied optimization for buttressed earth-retaining walls: implications for low-carbon conceptual designs. Journal of Cleaner Production, 164, pp. 872–884, 2017. jclepro.2017.06.246 [Crossref] [10] Torres-Machi, C., Pellicer, E., Yepes, V. & Chamorro, A., Towards a sustainable optimization of pavement maintenance programs under budgetary restrictions. Journal of Cleaner Production, 148, pp. 90–102, 2017. jclepro.2017.01.100 [Crossref] [11] García-Segura, T., Yepes, V. & Frangopol, D.M. Multi-objective design of post-tensioned concrete road bridges using artificial neural networks. Structural and Multidisciplinary Optimization, 56(1), pp. 139–150, 2017. [Crossref] [12] Penadés-Plà, V., Martí, J.V., García-Segura, T. & Yepes, V. Life-cycle assessment: A comparison between two optimal post-tensioned concrete box-girder road bridges. Sustainability, 9(10), p. 1864, 2017. [Crossref] [13] Navarro, I.J., Yepes, V. & Martí, J.V., Social life cycle assessment of concrete bridge decks exposed to aggressive environments. Environmental Impact Assessment Review, 72, pp. 50–63, 2018. [Crossref] [14] Sierra, L.A., Pellicer, E., & Yepes, V. Method for estimating the social sustainability of infrastructure projects. Environmental Impact Assessment Review, 65, pp. 41–53, 2017. [Crossref] [15] Gervásio, H., & da Silva, L.S., Life-cycle social analysis of motorway bridges. Structure and Infrastructure Engineering, 9(10), pp. 1019–1039, 2013. https://doi.org/ 10.1080/15732479.2011.654124
[16] Wang, W., On fuzzy TOPSIS method based on alpha level sets. Journal of Intelligent & Fuzzy Systems, 33(6), pp. 4067–4076, 2017. [Crossref] [17] Jia, J., Ibrahim, M., Hadi, M., Orabi, W. & Xiao, Y., Multi-criteria evaluation frame- work in selection of Accelerated Bridge Construction (ABC) method. Sustainability, 10, p. 4059, 2018. [Crossref] [18] Pipinato, A., Rebelo, C., Pedrosa, B. & Gervásio, H., Assessment procedure and rehabilitation criteria for riveted road bridges. Structural Engineering International, 30(1), pp. 109–118, 2020. [Crossref] [19] Navarro, I.J., Penadés-Plà, V., Martínez-Muñoz, D., Rempling, R. & Yepes, V., Life cycle sustainability assessment for multi-criteria decision making in bridge design: A review. Journal of Civil Engineering and Management, 26(7), pp. 690–704, 2020. [Crossref] [20] UNEP/SETAC. Guidelines for Social Life Cycle Assessment of Products. United Nations Environment Program. In: Paris SETAC Life Cycle Initiative United Nations Environment Programme, 2009.
[21] Fib. Fib Bulletin 34: Model Code for Service Life Design. Fib, Lausanne, 2006.
[22] Nogueira, C.G., Leonel, E.D. & Coda, H.B., Reliability algorithms applied to reinforced concrete structures durability assessment. Revista IBRACON de Estruturas e Materiais, 5(4), pp. 440–450, 2012. [Crossref] [23] Navarro, I.J., Yepes, V. & Martí, J.V., Role of the social dimension on the sustainability- oriented maintenance optimization of bridges in coastal environments. WIT Transac- tions on The Built Environment, Vol. 196, WIT Press, 2020, ISSN 1743-3509.
[24] Goedkoop, M., Heijungs, R., Huijbregts, M., De Schryver, A., Struijs, J. & Van Zelm, R., 2009. ReCiPe 2008, First Edition. (Report I: Characterisation)
[25] UNEP/SETAC. The methodological sheets for subcategories in social life cycle assess- ment (S-LCA). UNEP-SETAC Life-Cycle Initiative, Paris, France, 2013.
[26] Ecoinvent 3.2 database, www.ecoinvent.org. Accessed on: October 2020.
[27] Navarro, I.J., Yepes, V., Martí, J.V. & González-Vidosa, F., Life cycle impact assess- ment of corrosion preventive designs applied to prestressed concrete bridge decks. Journal of Cleaner Production, 196, pp. 698–713, 2018. jclepro.2018.06.110 [Crossref] [28] Hwang, C.L., & Yoon, K., Multiple Attribute Decision Making: Methods and Applica- tions. New York: Springer-Verlag, 1981.
[29] Saaty, T.L., The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation, McGraw-Hill., 1980.