[1] Topping, B.H.V. & Robinson, D.J., Optimization of timber framed structures. Computers & Structures, 18(6), pp. 1167–1177, 1984. 90161-5 [Crossref] [2] Kaziolasa, D.N., Bekasb, G.Ȁ., Zygomalasc, I. & Stavroulakisd, G.E., Life Cycle Analysis and Optimization of a Timber Building. 7th International Conference on Sustainability in Energy and Buildings, Energy Procedia, 83, pp. 41–49, 2015. https://doi. org/10.1016/j.egypro.2015.12.194
[3] Stanić, A., Hudobivnik, B. & Brank, B., Economic-design optimization of cross laminated timber plates with ribs. Composite Structures, 154, pp. 527–537, 2016. [Crossref] [4] Pech, S., Kandler, G., Lukacevic, M. & Füssl, J., Metamodel assisted optimization of glued laminated timber beams by using metaheuristic algorithms. Engineering Applications of Artificial Intelligence, 79, pp. 129–141, 2019. pai.2018.12.010 [Crossref] [5] Jelušič, P. & Kravanja, S., Optimal design of timber-concrete composite floors based on the multi-parametric MINLP optimization. Composite structures, 179, pp. 285–293, 2017. [Crossref] [6] Jelušič, P., Determining optimal designs of timber beams with non-uniform cross-section. High Performance and Optimum Design of Structures and Materials III, WIT Transactions on the Built Environment, 175, pp. 169–175, 2019.
[7] Kravanja, S. & Žula, T., Optimization of a timber hall structure. High Performance and Optimum Design of Structures and Materials IV, WIT Transactions on the Built Environment, 196, pp. 183–192, 2020.
[8] Eurocode 2. Design of concrete structures, European Committee for Standardization, Brussels 2004.
[9] Eurocode 3. Design of steel structures, European Committee for Standardization, Brus- sels 2005.
[10] Eurocode 5. Design of timber structures, European Committee for Standardization, Brussels 2008.
[11] Kravanja, Z. & Grossmann, I.E., New Developments and Capabilities in PROSYN – An Automated Topology and Parameter Process Synthesizer. Computers chem. Eng., 18, pp. 1097–1114, 1994. [Crossref] [12] Kravanja, S., Kravanja, Z. & Bedenik, B.S., The MINLP optimization approach to structural synthesis, Part I: A general view on simultaneous topology and parameter optimization. Int. J. Numer. Methods Eng., 43, pp. 263–292, 1998. https://doi.org/10.1002/ (sici)1097-0207(19980930)43:2<263::aid-nme412>3.0.co;2-u
[13] Kravanja, S., Soršak, A. & Kravanja, Z., Efficient multilevel MINLP strategies for solving large combinatorial problems in engineering. Optim. Engng., 4, pp. 97–151, 2003. [Crossref] [14] Brooke, A., Kendrick, D. and Meeraus, A., GAMS – A User’s Guide, Scientific Press, Redwood City, CA, 1988.
[15] WolframAlpha computational intelligence, https://www.wolframalpha.com/.
[16] Vratuša, S. & Premrov, M., Projektiranje lesenih konstrukcij. Projektiranje gradbenih konstrukcij po Evrokod standardih, Inženirska zbornica Slovenije, pp. 5/1–5/117, 2009.
[17] Kravanja, Z., Challenges in sustainable integrated process synthesis and the capabilities of an MINLP process synthesizer MipSyn. Comput. Chem. Eng., 34(11), pp. 1831–1848, 2010. [Crossref] [18] Drudd, A.S., CONOPT – A Large-Scale GRG Code, ORSA J. Comput., 6, 207–216, 1994.
[19] Abadie, J. & Carpentier, J., Generalization of the Wolfe reduced gradient method to the case of nonlinear constraints, Optimization, Academic Press, New York, 1969.
[21] Land, A.H. & Doig, A.G., An Automatic Method for Solving Discrete Programming Problems, Econometrica, 28(3), pp. 497–520, 1960. [Crossref]