[1] Jenkins, D.C. & Bowden, F.P., Practical aspects of rain erosion of aircraft and missiles.Philosophical Transactions of the Royal Society of London Series A, Mathematicaland Physical Sciences, 260(1110), pp. 153–160, 1966. [Crossref] [2] Meng, J.C. & Colonius, T., Numerical simulations of the early stages of high-speeddroplet breakup. Shock Waves, 25(4), pp. 399–414, 2015. [Crossref] [3] Theofanous, T.G. & Li, G.J., On the physics of aerobreakup. Physics of Fluids, 20(5),p. 052103, 2008. [Crossref] [4] Kuhnke, D., Spray wall interaction modeling by dimensionless data analysis. PhD Thesis,2004.
[5] Mundo, C., Droplet-wall collisions: Experimental studies of the deformation andbreakup process. International Journal of Multiphase Flow, 21(2), pp. 151–173, 1995. [Crossref] [6] Engel, O., Fragmentation of waterdrops in the zone behind an air shock. Journalof Research of the National Bureau of Standards, 60(3), p. 245, 1958. [Crossref] [7] Reinecke, W.G. & McKay, W.L., Experiments on water drop breakup behind mach 3 to12 shocks. Report AVATD-0172-69-RR, 1969.
[8] Ranger & Nicholls, Water droplet breakup in high speed airstreams. 3rd Inter Conf RainErosion and Allied Phenomena, 1970.
[9] Boiko, V.M., Papyrin, A.N. & Poplavskii, S.V., Dynamics of droplet breakup in shockwaves. Journal of Applied Mechanics and Technical Physics, 28(2), pp. 263–269, 1987. [Crossref] [10] Wierzba, A. & Takayama, K., Experimental investigation of the aerodynamicbreakup of liquid drops. AIAA Journal, 26(11), pp. 1329–1335, 1988. [Crossref] [11] Yoshida, T. & Takayama, K., Interaction of liquid droplets with planar shockwaves. Journal of Fluids Engineering, 112(4), pp. 481–486, 1990. [Crossref] [12] Chou, W.H., Hsiang, L.P. & Faeth, G., Temporal properties of drop breakup in the shearbreakup regime. International Journal of Multiphase Flow, 23(4), pp. 651–669, 1997. [Crossref] [13] Joseph, D., Belanger, J. & Beavers, G., Breakup of a liquid drop suddenly exposed toa high-speed airstream. Int Journal of Multiphase Flow, 25(6), pp. 1263–1303, 1999. [Crossref] [14] Theofanous, T., Li, G. & Dinh, N., Rayleigh-taylor and kelvin-helmholz instabilities inaerobreakup. American Physical Society, 2003.
[15] Igra, D. & Takayama, K., Experimental and numerical study of the initial stages in theinteraction process between a planar shock wave and a water column. Proceedings of23rd International Symposium on Shock Waves, p. 8, 2001.
[16] Nourgaliev, R., Dinh, N. & Theofanous, T., Direct numerical simulation of compressiblemultiphase flows. International Conference on Multiphase Flow, ICMF04, p. 18,2004.
[17] Chen, H., Two-dimensional simulation of stripping breakup of a water droplet. AIAAJournal, 46, pp. 1135–1143, 2008. [Crossref] [18] Sanada, T., Ando, K. & Colonius, T., A computational study of high-speed dropletimpact. Fluid Dynamics and Materials Processing, p. 12, 2011. [Crossref] [19] Sembian, S., Liverts, M., Tillmark, N. & Apazidis, N., Plane shock wave interactionwith a cylindrical water column. Physics of Fluids, 28, p. 056102, 2016. [Crossref] [20] Wang, T., Liu, N., Yi, X., Lu, X. & Wang, P., Numerical study on shock/droplet interactionbefore a standing wall. CiCP, 23(4), 2018. [Crossref] [21] He´bert, D., Rullier, J.L., Chevalier, J.M., Bertron, I., Lescoute, E., Virot, F. & El-Rabii,H., Investigation of mechanisms leading to water drop breakup at mach 4.4 and webernumbers above 105. SN Applied Sciences, 2(1), p. 69, 2019. [Crossref] [22] Tymen, G., Allanic, N., Sarda, A., Mousseau, P., Plot, C., Madec, Y. & Caltagirone, J.,Temperature mapping in a two-phase water-steam horizontal flow. Experimental HeatTransfer, 31(4), pp. 317–333, 2018. [Crossref] [23] Cano-Lozano, The use of volume of fluid technique to analyze multiphase flows: Specificcase of bubble rising in still liquids. Applied Mathematical Modelling, 2014.
[24] Bernard-Champmartin, A. & Vuyst, F.D., A low diffusive lagrange-remap scheme forthe simulation of violent air–water free-surface flows. Journal of Computational Physics,274, pp. 19–49, 2014. [Crossref] [25] Gasc, T., Improving numerical methods on recent multi-core processors. Application toLagrange-Plus-Remap hydrodynamics solver. Thesis, 2016.
[26] Chinnayya, A., Daniel, E. & Saurel, R., Modelling detonation waves in heterogeneousenergetic materials. Journal of Computational Physics, 196(2), pp. 490–538, 2004. [Crossref] [27] Champmartin, A., Mode´lisation et e´tude nume´rique d’e´coulements diphasiques.Thesis, 2011.
[28] Shu, C.W. & Osher, S., Efficient implementation of essentially non-oscillatory shockcapturingschemes. Journal of Computational Physics, 77(2), pp. 439–471, 1988.
[29] Williams, R., Sub-grid properties and artificial viscous stresses in staggered-meshschemes. Journal of Computational Physics, 374, pp. 413–443, 2018. [Crossref] [30] Dawes, A., Parallel multi-dimensional and multi-material eulerian staggered meshschemes using localised patched based adaptive mesh refinement (amr) for strong shockwave phenomena. Adaptative Mesh Refinement – Theory and Applications, 41, 2005.
[31] Wilkins, M.L., Use of artificial viscosity in multidimensional fluid dynamic calculations.Journal of Computational Physics, 36(3), pp. 281–303, 1980. [Crossref] [32] Richard, S., Petitpas, F. & Berry, R.A., Simple and efficient relaxation methods forinterfaces separating compressible fluids, cavitating flows and shocks in multiphasemixtures. Journal of Computational Physics, 228(5), pp. 1678–1712, 2009. [Crossref] [33] Mirjalili, S., Jain, S.S. & Dodd, M.S., Interface-capturing methods for two-phaseflows: An overview and recent developments. Center for Turbulence Research - AnnualResearch Brief, p. 19, 2017.
[34] Mosso, S. & Clancy, S., Geometrically derived priority system for youngs’ interfacereconstruction. Tech report, Los Alamos National Laboratory, 1995.
[35] Leboucher, J.C., Re´alisation et performances d’un tube a` choc a` deux diaphragmes.Thesis, p. 111, 1973.
[36] Wang, E. & Shukla, A., Analytical and experimental evaluation of energies duringshock wave loading. International Journal of Impact Engineering, 37(12), pp. 1188–1196, 2010. [Crossref] [37] Meng, J.C. & Colonius, T., Numerical simulation of the aerobreakup of a water droplet.Journal of Fluid Mechanics, 835, p. 1108–1135, 2018. [Crossref] [38] Pilch, M. & Erdman, C., Use of breakup time data and velocity history data to predictthe maximum size of stable fragments for acceleration-induced breakup of a liquiddrop. International Journal of Multiphase Flow, 13(6), pp. 741–757, 1987. [Crossref] [39] Vallerani, E., An “ideal equivalent gas method” for the study of shock waves in supersonicreal gas flows. Meccanica, 4(3), pp. 234–249, 1969. [Crossref] [40] Mirjalili, S., Ivey, C.B. & Mani, A., Comparison between the diffuse interface andvolume of fluid methods for simulating two-phase flows. International Journal ofMultiphase Flow, 116, pp. 221–238, 2019. [Crossref] [41] Baals, D.D. & Corliss, W.R., Wind tunnels of nasa. Technical Report – Research andsupport facilities, 1981.
[42] Sharma, P. & Hammett, G.W., Preserving monotonicity in anisotropic diffusion. Journalof Computational Physics, 227(1), pp. 123–142, 2007. [Crossref] [43] Pudasaini, S. & Kro¨ner, C., Shock waves in rapid flows of dense granular materials:Theoretical predictions and experimental results. Physical Review E, Statistical,Nonlinear, and Soft Matter Physics, 78, p. 041308, 2008. [Crossref] [44] Kokh, S. & Lagoutie`re, F., An anti-diffusive numerical scheme for the simulationof interfaces between compressible fluids by means of a five-equation model. Journalof Computational Physics, 229, pp. 2773–2809, 2010. [Crossref] [45] Umemura, A. & Shinjo, J., Detailed sgs atomization model and its implementationto two-phase flow les. Combustion and Flame, 195, pp. 232–252, 2018. [Crossref] [46] Vajda, B., Lesˇnik, L., Bombek, G., Bilusˇ, I., Zˇ unicˇ, Z., Sˇkerget, L., Hocˇevar,M., Sˇirok, B. & Kegl, B., The numerical simulation of biofuels spray. Fuel, 144, pp.71–79, 2015. [Crossref] [47] Pogorevc, P., Kegl, B. & Sˇkerget, L., Diesel and biodiesel fuel spray simulations.Energy and Fuels – ENERG FUEL, 22, 2008.
[48] Hrebtov, M., Mixed lagrangian-eulerian simulation of interaction between a shockwaveand a cloud of water droplets. Journal of Engineering Thermophysics, 29, 2020.