[1] Demoes, N.J., Bann, G.T., Wilkins, B.D., Grubaugh, K.E. & Hromadka II, T.V., Optimizationalgorithm for locating computational nodal points in the method of fundamentalsolutions to improve computational accuracy in geosciences modeling. TheProfessional Geologist, 2019.
[2] Bathe, K.J., Finite Element Procedures. Prentice Hall, Pearson Education, Inc., 1996.
[3] Young, D., Chen, K., Chen, J. & Kao, J., A modified method of fundamental solutionswith source on the boundary for solving laplace equations with circular and arbitrarydomains. Computer Modeling in Engineering and Sciences, 19(3), pp. 197–221, 2007. [Crossref] [4] Fornberg, B. & Flyer, N., Fast generation of 2-D node distributions for mesh-free PDEdiscretizations. Computers and Mathematics with Applications, 69, pp. 531–544, 2015. [Crossref] [5] Liu, Y., Nie, Y., Zhang, W. & Wang, L., Node placement method by bubble simulationand its application. Computer Modeling in Engineering and Sciences, 55(1), pp.89–109, 2010.
[6] Shankar, V., Kirby, R.M. & Fogelson, A.L., Robust Node Generation for Mesh-free discretizationson irregular domains and surfaces. SIAM Journal on Scientific Computing,40(4), pp. 2584–2608, 2018. [Crossref] [7] Slak, J. & Kosec, G., Fast generation of variable density node distributions for meshfreemethods. Boundary Elements and other Mesh Reductions Methods XLI. WIT Press:Southampton and Boston, pp. 163–173, 2019.
[8] Chen, C., Karageorghis, A. & Li, Y., On choosing the location of the sources in the MFS.Numerical Algorithms (Springer), 72(1), pp. 107–130, 2016. [Crossref] [9] Hromadka II, T. & Guymon, G., Application of a boundary integral equation to predictionof freezing fronts in soil. Cold Regions Science and Technology, 6, pp. 115–121,1982. [Crossref] [10] Wilkins, B.D., Greenberg, J., Redmond, B., Baily, A., Flowerday, N., Kratch, A., HromadkaII, T.V., Boucher, R., McInvale, H.D. & Horton, S., An unsteady two dimensionalcomplex variable boundary element method. SCIRP Applied Mathematics, 8(6),pp. 878–891, 2017. [Crossref] [11] Wilkins, B.D., Hromadka II, T.V. & Boucher, R., A conceptual numerical model of thewave equation using the complex variable boundary element method. Applied Mathematics,8(5), p. 724, 2017. [Crossref] [12] Hromadka II, T.V. & Guymon, G.L., A complex variable boundary element method:Development. International Journal for Numerical Methods Engineering, 20, pp.25–37, 1984. [Crossref] [13] Johnson, A.N. & Hromadka II, T.V., Modeling mixed boundary conditions in a Hilbertspace with the complex variable boundary element method (CVBEM). MethodsX, 2,pp. 292–305, 2015. [Crossref] [14] Hromadka II, T. & Pardoen, G.C., Application of the CVBEM to non-uniform St.Venant torsion. Computer Methods in Applied Mechanics and Engineering, 53(2), pp.149–161, 1985. [Crossref] [15] Hromadka II, T.V. & Lai, C., The Complex Variable Boundary Element Method.Springer-Verlag, New York, 1987.
[16] Hromadka II, T. & Whitley, R., A new formulation for developing CVBEM approximationfunctions. Engineering Analysis with Boundary Elements, 18(1), pp. 39–41, 1996. [Crossref] [17] Hromadka II, T.V. & Whitley, R.J., Advances in the Complex Variable Boundary ElementMethod. Springer, New York, 1998.
[18] Hromadka II, T. & Whitley, R., Foundations of the Complex Variable Boundary ElementMethod. Springer, 2014.
[19] Brebbia, C.A., The Boundary Element Method for Engineers. Wiley, 1978.
[20] Brebbia, C. & Wrobel, L., Boundary element method for fluid flow. Advances in WaterResources, 2, pp. 83–89, 1979. [Crossref] [21] Hromadka II, T.V., A Multi-Dimensional Complex Variable Boundary Element Method,volume 40 of Topics in Engineering. WIT Press: Southampton and Boston, 2002.
[22] Johnson, A.N., Hromadka II, T.V., Hughes, M.T. & Horton, S.B., Modeling mixedboundary problems with the Complex Variable Boundary Element Method (CVBEM)using matlab and mathematica. International Journal of Computational Methods andExperimental Measurements, 3(3), pp. 269–278, 2015. [Crossref] [23] Wilkins, B.D., Hromadka II, T.V., Johnson, A.N., Boucher, R., McInvale, H.D. & Horton,S., Assessment of complex variable basis functions in the approximation of idealfluid flow problems. International Journal of Computational Methods and ExperimentalMeasurements, 7(1), pp. 45–56, 2019. [Crossref] [24] Kirchhoff, R.H., Potential Flows Computer Graphic Solutions. CRC Press, 1985.