[1] Manthey, D.W. & Lee, D., Vision based Surface Strain Measurement System. JOM,47(7), pp. 46–49, 1995. [Crossref] [2] Vogel, J.H., & Lee, D., The automated measurement of strain from three-dimensionaldeformed surfaces. JOM, 42(2), pp. 8–13, 1990. [Crossref] [3] Theocaris, P.S., Moire Fringes in Strain Analysis, Oxford: Pergamon Press, 1969.
[4] Durelli, A.J. & Parks, V.J., Moire Analysis of Strain, Prentice-Hall, 1970.
[5] Chiang, F.P., Experimental Stress Analysis Techniques SESA Monograph, edited byA.S. Kobayashi, Chap.6, 1978
[6] Vest, C.M., Holographic Interferometry, John Wiley and Sons, 1979.
[7] Erf, R.K., Speckle Metrology, Academic Press, New York, 1978.
[8] Kobayashi, A.S., Handbook on experimental Mechanics, VCH Publishers, New York,1993.
[9] Dainty, J.C., Laser Speckle and Related Phenomena, Springer-Verlag, New York, 1975
[10] Takaki, T., et al., Strain visualization sticker using Moiré fringe for remote sensing,Proceeding of the sixth international conference on bridge maintenance, safety andmanagement, pp. 8–12, 2012.
[11] Han, B., Higher sensitivity moiré interferometry for micromechanical studies. OpticalEngineering, 31(7), pp. 1517–1526, 1992. 14: Strains components e e g x , y ,and xy distribution obtained by radial basis functioninterpolation. [Crossref] [12] Huntley, J. M., Palmer, S.J.P., Goldrein, H. T. & Melin, L.G., Microstructural strainanalysis by high magnification moiré interferometry. SPIE Proceedings (2545) (InterferometryVII: Applications), San Diego, USA, pp. 86–95, 1995.
[13] Trolinger, J.D., Fundamentals of Interferometry and Holography for Civil andStructural Engineering Measurements. Optics and Lasers in Engineering, 24(2–3),pp. 89–109, 1996. [Crossref] [14] Rastogi, P. (ed.), Photomechanics, Springer-Verlag: Berlin Heidelberg, pp. 103–145, 2000.
[15] Francis, D., Tatam, R.P. & Groves, R.M., Shearography technology and application: areview. Measurement Science and Technology, 21(10), pp. 102001–102030. [Crossref] [16] Sutton, M.A., & Wolters, W.J., Determination of displacement using an improveddigital image correlation method, Image Vision Computing, 1(3), pp. 133–139, 1983. [Crossref] [17] Chu, T.C., Ranson, W.F., Sutton, M.A, & Peters, W.H., Application of digital image correlationtechniques to experimental mechanics, Experimental Mechanics, 25, pp. 232–244,1985. [Crossref] [18] Sutton, M. A., Orteu, J.J., Schreier, H., Image Correlation for Shape, Motion and DeformationMeasurements. Springer-Verlag: US, pp.
[19] Bing, P., Hui-min, X., Bo-qin, X., Fu-long, D., Performance of sub-pixel registrationalgorithms in digital image correlation. Measurement Science and Technology, 17(6),pp. 1615–1621, 2006. [Crossref] [20] Mudassar, A.A., Butt, S., Improved Digital Image Correlation method. Optics andLasers in Engineering, 87, pp. 156–167, 2016. [Crossref] [21] Zhang, D.S., Luo, M., Arola, D.D., Displacement/strain measurements using an opticalmicroscope and digital image correlation. Optical Engineering, 45(3), 2006. [Crossref] [22] Sutton, M.A, Li, N., Joy, D.C. & Reynolds, A.P., Scanning electron microscopy forquantitative small and large deformation measurements Part I: SEM imaging at magnificationsfrom 200 to 10,000. Experimental Mechanics, 47, pp. 775–787, 2007. [Crossref] [23] Yoneyama, S., Kikuta, H., Kitagawa, A. & Kitamura, K., Lens distortion correction fordigital image correlation by measuring rigid body displacement. Optical Engineering,45(2), 2006. [Crossref] [24] Sutton, M.A., et al., Metrology in a scanning electron microscope: Theoretical developmentsand experimental validation. Measurement Science and Technology, 17(10),pp. 2613–2622, 2006. [Crossref] [25] Sutton, M.A., et al., Scanning electron microscope for quantitative small and largedeformation measurements part II, Experimental validation for magnifications from 200to 10,000. Experimental Mechanics, 47(6), pp. 789–804, 2007. [Crossref] [26] Sun, Y. & Pang, J.H.L., AFM image reconstruction for deformation measurementsby digital image correlation. Nanotechnology, 17(4), pp. 933–939, 2006. [Crossref] [27] Gauvin, C., Jullien, D., Doumalin, P., Dupre, J.C. & Gril, J., Image correlation to evaluatethe influence of hygrothermal loading on wood. Strain, 50, pp. 428–435, 2014. [Crossref] [28] Pan, B., Reliability-guided digital image correlation for image deformation measurement.Applied Optics, 48(8), pp. 1535–1542, 2009. [Crossref] [29] Yang, X., Liu, Z. & Xie, H., A real time deformation evaluation method for surface andinterface of thermal barrier coatings during 1100 °C thermal shock. Measurement Scienceand Technology, 23(10), pp. 105604–105614, 2012. [Crossref] [30] Brillaud, J. & Lagattu, F., Limits and possibilities laser speckle and white-light imagecorrelationmethods: Theory and experiments. Applied Optics, 41(31), pp. 6603–6613,2002. [Crossref] [31] Song, J., Yang, J., Liu, F. & Lu, K., Quality assessment of Laser speckle patterns fordigital image correlation by a Multi Factor Fusion Index. Optical Engineering, 124,pp. 105822–105837, 2020. [Crossref] [32] Goodman, J.W., Laser speckle and related phenomena. Statistical Properties of LaserSpeckle Patterns, 9, pp. 9–75, 1975.
[33] Kassab, A.J., Moslehy, F.A. & Daryapurkar, A., Detection of cavities by an inverse elastostaticsboundary element method: experimental results. Transactions of Modellingand Simulation, 8, pp. 85–92, 1994. [Crossref] [34] Fraley, J.E., Hamed, M.A., Peters, W.H. & Ranson, W.F., Experimental boundaryintegral equation application in speckle interferometry. SESA Spring Conference,pp. 68–71, 1981.
[35] Peters, W.H. & Ranson, W.F., Digital imaging techniques in experimental stress analysis.Optical Engineering, 21, pp. 427–431, 1982.
[36] Pilch, A., Maudlin, J., Mahajan, A. & Chu, T., Intelligent image correlation using geneticalgorithms for measuring surface displacements and strain profiles. ASME InternationalMechanical Engineering Congress and Exposition, DSC-Volume 70, pp. 81–88, 2001.
[37] Chu. T., Mahajan, A. & Liu, C.T., An economical vision-based method to obtain allfielddeformation profiles. Experimental Techniques, 26(6), pp. 25–29. [Crossref] [38] Goldberg, D.E., Genetic Algorithms in Search, Optimization and Machine Learning.Addison-Wesley, Reading, MA, 1989.
[39] Divo, E.A., Kassab, A.J. & Rodríguez, F., An efficient singular superposition techniquefor cavity detection and shape optimization. Numerical Heat Transfer, Part B: Fundamentals,46(1), pp. 1–30, 2004. [Crossref] [40] Divo, E., Kassab, A. & Rodriguez, F., Characterization of space dependent thermalconductivity with a BEM based Genetic Algorithm. Numerical Heat Transfer, Part A:Applications, 37(8), pp. 845–875, 2000. [Crossref] [41] Silieti, M., Divo, E., & Kassab, A.J., Singular superposition/boundary element methodfor reconstruction of multi-dimensional heat flux distributions with applications to filmcooling holes. Computers, Materials and Continua, 12(2), pp. 121–144, 2009.
[42] Hardy, R.L., Multiquadric equations of topography and other irregular surfaces. Journalof Geophysical Research, 76(8), pp. 1905–1915, 1971.
[43] Buhmann, M.D., Radial Basis Functions: Theory and Implementation. Cambridge UniversityPress, Cambridge, 2003.
[44] Kansa, E.J., Hon, Y.C., Circumventing the ill-conditioning problem with multiquadricradial basis functions: Applications to elliptical partial differential equations. Computers& Mathematics with Applications, 39(7–8), pp. 123–137, 2000.
[45] Pepper, D., Kassab, A. & Divo, E., (eds.), Introduction to Finite Element, BoundaryElement and meshless methods: With Applications to Heat Transfer and Fluid Flow,ASME Press.
[46] Sarler, B., Tran-Cong, T. & Chen, C.S., Meshfree direct and indirect local radial basisfunction collocation formulations for transport phenomena. WIT transactions on Modellingand Simulation, pp. 417–427, 2005.
[47] Brebbia, C.A., Telles, J.C.F. & Wrobel, L.C. (eds.), Boundary Element Techniques.Springer-Verlag: Berlin; 1984.
[48] Gamez, B., Ojeda, D., Divo, E., Kassab, A. & Cerrolaza, M., Parallelized iterativedomain decomposition boundary element method for thermoelasticity in piecewisenon-homogeneous media. Engineering Analysis with Boundary Elements, 32,pp. 1061–1073, 2008.
[49] Ojeda, D., Gamez, B., Divo, E., Kassab, A. & Cerrolaza, M., Singular superpositionelastostatics BEM/GA algorithm for cavity detection. Boundary Elements and OtherMesh Reduction Methods XXIX, 44, pp. 313–322, 2007.