[1] Sensinger, J. W. & Lipsey, J. H., Cycloid vs. harmonic drives for use in high ratio, singlestage robotic transmissions. 2012 IEEE Int. Conf. Robot. Autom., pp. 4130–4135, 2012.
[2] Gorla, C., Davoli, P., Rosa, F., Longoni, C., Chiozzi, F. & Samarani, A., Theoreticaland experimental analysis of a cycloidal speed reducer. J. Mech. Des. Trans. ASME,130(11), pp. 1126041–1126048, 2008. [Crossref] [3] Blagojevic, M., Marjanovic, N., Djordjevic, Z., Stojanovic, B., Marjanovic, V., Vujanac,R. & Disic, A., Numerical and experimental analysis of the cycloid disc stress state.Tech. Gaz., . 21(2), pp. 337–382, 2014.
[4] H. B. -r. Niemann, G., Winter, H, Maschinenelemente. 2005.
[6] Xia, Y., A new topology of CMG for high torque and low loss, 2016 Prog. Electromagn.Res. Symp. PIERS 2016 – Proc., 65(11–12), pp. 78–82, 2016.
[7] Concli, F., Low-loss gears precision planetary gearboxes: reduction of the load dependentpower losses and efficiency estimation through a hybrid analytical-numerical optimizationtool. Forsch. im Ingenieurwesen/Engineering Res., 2017.
[8] Anderson, N. E. & Loewenthal, S. H., Design of spur gears for improved efficiency. J.Mech. Des. Trans. ASME, 104(4), pp. 767–774, 1982.
[11] Daily, J. W. & Nece, R. E., Chamber dimension effects on induced flow and frictionalresistance of enclosed rotating disks. J. Fluids Eng. Trans. ASME, 82(1), pp. 217–230,1960. [Crossref] [12] Mann, R. W. & Marston, C. H., Friction drag on bladed disks in housings as a functionof reynolds number, axial and radial clearance, and blade aspect ratio and solidity. J.Fluids Eng. Trans. ASME, 83(4), pp. 719–723, 1961. [Crossref] [13] Ohlendorf, H., Verlustleistung und Erwärmung von Stirnrädern. Verlustleistung undErwärmung von Stirnrädern, 1958.
[14] Richter, W., Stirnradgetriebe, Zahnreibung, Verlustleistung und Erwärmung, 1964.
[15] Terekhov, A. S., Hydraulic Losses In Gearboxes With Oil Immersion. Russ Eng J,55(5), pp. 7–11, 1975.
[16] Walter, P. & Langenbeck, K., Anwendungegrenzen für die Tauchschmierung von Zahnradgetrieben,Plansch- und Quetschverluste bei Tauchschmierung, 1982.
[17] Walter, P., Untersuchung Zur Tauchschmierung Von Stirnrädern Bei UmfangsgeschwindigkeitenBis 60 M/S, 1982.
[18] Mauz, W., Hydraulische Verluste von Strinradgetrieben bei Umfansgsgeschwindigkeitenbis 60 m/s, Hydraul. Verluste von Stirnradgetrieben Bei UmfangsgeschwindigkeitenBis 60 M/s, 1987.
[19] Diab,Y., Ville, F., Velex, P. & Changenet, C., Windage losses in high speed gears-preliminaryexperimental and theoretical results. J. Mech. Des. Trans. ASME, 126(5), pp.903–908, 2004. [Crossref] [20] Höhn, B. R., Michaelis, K. & Otto, H. P., Influence on no-load gear losses. Ecotrib 2011Conf. Proc., 2, pp. 639–644, 2011.
[21] Marchesse, Y., Changenet, C., Ville, F. & Velex, P., Investigations on CFD simulationsfor predicting windage power losses in spur gears. J. Mech. Des. Trans. ASME, 133(2),2011. [Crossref] [22] Gorla, C., Concli, F., Stahl, K., Höhn, B. R., Michaelis, K., Schultheiß, H., & Stemplinger,J. P., Hydraulic losses of a gearbox: CFD analysis and experiments. TribologyInternational, 66, pp. 337–344, 2013. [Crossref] [23] Stahl, K., Höhn, B. R., Michaelis, K., Schultheiß, H., Stemplinger, J. P., Gorla, C., &Concli, F, CFD Simulations of Splash Losses of a Gearbox. Advances in Trobology, 10,2012. [Crossref] [24] Concli, F., Gorla, C., Stahl, K., Höhn, B. R., Michaelis, K., Schultheiß, H., & Stemplinger,J. P., Load independent power losses of ordinary gears: Numerical and experimentalanalysis. In 5th World Tribology Congress WTC 2013, 2, pp. 1243–1246, 2013. [Crossref] [25] Concli, F., Gorla, C., Della Torre, A. & Montenegro, G., Windage power losses of ordinarygears: Different CFD approaches aimed to the reduction of the computationaleffort. Lubricants, 2(4), pp. 162–176, 2014. [Crossref] [26] Concli, F., Gorla, C., Della Torre, A. & Montenegro, G., Churning power losses ofordinary gears: A new approach based on the internal fluid dynamics simulations. Lubr.Sci., 27(5), 2015. [Crossref] [27] Groenenboom, P. H. L., Mettichi, M. Z. & Gargouri, Y., Simulating Oil Flow for GearboxLubrication using Smoothed Particle Hydrodynamics. Proc. Int. Conf. Gears 2015,2015.
[28] Ji, Z., Stanic, M., Hartono, E. A. & Chernoray, V., Numerical simulations of oil flowinside a gearbox by Smoothed Particle Hydrodynamics (SPH) method, Tribol. Int., 127,pp. 47–58, 2018. [Crossref] [29] Liu, Z., Shen, Y. & Rinderknecht, S., Theoretical and experimental investigation onpower loss of vehicle transmission synchronizers with spray lubrication. SAE Tech.Pap., 2019, pp. 215–226, 2019.
[30] Rahmatjan I., & Geni, M., SPH algorithm for proper meshing and coupling contact ofgears. Zhendong yu Chongji/Journal Vib. Shock, 34(12), pp. 65–69, 2015.
[31] Shi, Y., Li, S., Chen, H., He, M. & Shao, S., Improved SPH simulation of spilled oilcontained by flexible floating boom under wave–current coupling condition. J. FluidsStruct., 76, pp. 272–300, 2018. [Crossref] [32] Imin, R. & Geni, M., Stress analysis of gear meshing impact based on SPH method,Math. Probl. Eng., 2014, 2014. [Crossref] [33] Zhigang, Y., Imin, R. & Geni, M., Study on the gear modeling in SPH analysis. Adv.Mater. Res., 33–37, pp. 773–778, 2008. [Crossref] [34] Liu, H., Arfaoui, G., Stanic, M., Montigny, L., Jurkschat, T., Lohner, T., & Stahl, K.,Numerical modelling of oil distribution and churning gear power losses of gearboxes bysmoothed particle hydrodynamics. Proceedings of the Institution of Mechanical Engineers,Part J: Journal of Engineering Tribology, 233(1), pp. 74–86, 2019.
[35] Concli, F. & Gorla, C., Windage, churning and pocketing power losses of gears: differentmodeling approaches for different goals [Wirkungsgrad und Verluste von Zahnradgetrieben:Verschiedene Methoden für verschiedene Anwendungen]. Forsch. imIngenieurwesen/Engineering Res., 80(3–4), pp. 85–99, 2016. [Crossref] [36] Concli, F., Maccioni, L. & Gorla, C., Lubrication Of Gearboxes: CFD Analysis Of ACycloidal Gear Set. In WIT Transactions on Engineering Sciences, 123, pp. 101–112,2019.
[37] Concli, F. & Gorla, C., Numerical modeling of the churning power losses in planetarygearboxes: An innovative partitioning-based meshing methodology for the applicationof a computational effort reduction strategy to complex gearbox configurations. LubricationScience, 29(7), pp. 455–474, 2017. [Crossref] [38] Concli, F. & Gorla, C., CFD simulation of power losses and lubricant flows in gearboxes.American Gear Manufacturers Association Fall Technical Meeting, 2017, 2017.
[39] Concli, F., Conrado, E. & Gorla, C., Analysis of power losses in an industrial planetaryspeed reducer: Measurements and computational fluid dynamics calculations.Proc. Inst. Mech. Eng. Part J J. Eng. Tribol., 228(1), 2014. [Crossref] [40] Concli, F., Thermal and efficiency characterization of a low-backlash planetarygearbox: An integrated numerical-analytical prediction model and its experimentalvalidation. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol., 230(8), 2016. [Crossref] [41] Drewniak, J., Kopec, J. Zawislak, S., Kinematical and efficiency analysis of planetarygear trains by means of various graph-based approaches. Mech. Mach. Sci., 34, pp.263–284, 2016.
[42] Yin, H. B., Li, S. L., Zhang, H., Zhao, X. Y. & Zhang, J., The power loss and efficiencyanalysis of a 3DOFs planetary gear box. Adv. Mater. Res., 834–836, pp. 1285–1289,2013. [Crossref] [43] Concli, F & Gorla, C., Computational and experimental analysis of the churning powerlosses in an industrial planetary speed reducer. WIT Transactions on Engineering Sciences,74, pp. 287–298, 2012.
[44] Concli, F., & Gorla, C., Influence of lubricant temperature, lubricant level and rotationalspeed on the churning power loss in an industrial planetary speed reducer: computationaland experimental study. Int. J. Comput. Methods Exp. Meas., 1(4), pp. 353–366,2013. [Crossref] [45] Concli, F. & Gorla, C., Numerical modeling of the power losses in geared transmissions:Windage, churning and cavitation simulations with a new integrated approachthat drastically reduces the computational effort. Tribol. Int., 103, pp. 58–68, 2016. [Crossref] [46] Concli, F., Della Torre, A., Gorla, C. & Montenegro, G., A new integrated approach forthe prediction of the load independent power losses of gears: development of a meshhandlingalgorithm to reduce the CFD simulation time. Adv. Tribol., 2016, 2016.
[48] Schöberl, J., An advancing front 2D/3D-mesh generator based on abstract rules. Comput.Vis. Sci., 1(1), pp. 41–52, 1997. [Crossref] [49] Concli, F., Gorla, C., Rosa, F. & Conrado, E., Effect of the static pressure on the powerdissipation of gearboxes. Lubr. Sci., 31(8), pp. 347–355, 2019.
[50] Sensinger, J. W., Unified approach to cycloid drive profile, stress, and efficiency optimization.J. Mech. Des. Trans. ASME, 132(2), pp. 245031–245035, 2010.
[51] Concli, F. & Gorla, C., Oil squeezing power losses in gears: A CFD analysis. WITTransactions on Engineering Sciences, 74, pp. 37–48, 2012.
[52] Concli, F., & Gorla, C., Analysis of the oil squeezing power losses of a spur gear pairby mean of CFD simulations. ASME 2012 11th Biennial Conference on EngineeringSystems Design and Analysis, ESDA 2012, 2, pp. 177–184, 2012.
[53] Concli, F. & Gorla, C., A CFD analysis of the oil squeezing power losses of a gear pair.Int. J. Comput. Methods Exp. Meas., 2(2), pp. 157–167, 2014. [Crossref] [54] Rundo, M., Models for flow rate simulation in gear pumps: A review. Energies, 10(9),2017. [Crossref] [55] Serov, A. F., Nazarov, A. D., Mamonov, V. N. & Terekhov, V. I., Experimental investigationof energy dissipation in the multi-cylinder Couette-Taylor system with independentlyrotating cylinders. Appl. Energy, 251, 2019.
[56] Fu, X., Liu, G., Tong, R., Ma, S. & Lim, T. C., A nonlinear six degrees of freedomdynamic model of planetary roller screw mechanism. Mech. Mach. Theory, 119, pp.22–36, 2018. [Crossref] [57] Burka, E. S. & Ciania, W., An approximate method determining volumetric losses inradial clearance of a gear pump, 1987.