[1] Ackert, S., Engine maintenance concepts for financiers. Aircraft Monitor, 2, pp. 1–43,2011.
[2] Kurz, R. & Brun, K., Fouling mechanisms in axial compressors. Journal of Engineeringfor Gas Turbines and Power, 134(3), pp. 1–9, 2012. [Crossref] [3] Meher-Homji, C.B. & Bromley, A., Gas turbine axial compressor fouling and washing.Proceedings of tnhe 33rd Turbomachinery Symposium, Vol. 1, pp. 163–192, 2004.
[4] Syverud, E., Brekke, O. & Bakken, L.E., Axial commpressor deterioration caused bysaltwater ingestion. Proceedings of GT2005—ASNME TurboExpo, Reno-Tahoe, USA,Vol. 1, pp. 1–11, 2005.
[5] Meher-Homji, C.B., Compressor and hot section fouling in gas tunbines—causes andeffects. Proceedings from the 9th Annual Industrial Energy Technology Conference,Houston, USA, Vol. 1, pp. 261–269, 1987.
[6] Meher-Homji, C.B., Chaker, M.A. & Motiwala, H.M., Gas turbine performance deterioration.Proceedings of the 30th Turbomachinery Symposium, College Station, USA,Vol. 1, pp. 139–175, 2001.
[7] Martn-Aragn, J. & Valds, M., A method to determine the economic cost of fouling ofgas turbine compressors. Applied Thermal Engineering, 69(1–2), pp. 261–266, 2014.
[8] Diakunchak, I.S., Performance deterioration in industrial gas turbines. InternationalGas Turbine and Aeroengine Congress and Exposition, Orlando, USA, Vol. 4, pp. 1–8,1991.
[9] Oosting, J., Boonstra, K., de Haan, A., van der Vecht, D., Stalder, J.P. & Eicher, U.,On line compressor washing on large frame 9-fa gas turbines erosion on r0 compressorblade leading edge field performance with a novel on line wash system. Proceedings ofGT2007: ASME Turbo Expo, Montreal, Canada, Vol. 1, pp. 1–10, 2007.
[10] Mund, F.C. & Pilidis, P., Gas turbine compressor washing: Historical developments,trends and main design parameters for online systems. Journal of Engineering for GasTurbines and Power, 128(2), pp. 344–353, 2006. [Crossref] [11] Mund, F.C. & Pilidis, P., Online compressor washing: a numerical survey of influencingparameters. Proceedings of the Institution of Mechanical Engineers—Journal of Powerand Energy, 219(1), pp. 13–23, 2005. [Crossref] [12] Brun, K., Grimley, T.A., Foiles, W.C. & Kurz, R., Experimental evaluation of the effectivenessof online water-washing in gas turbine compressors. Proceedings of the 42ndTurbomachinery Symposium, Houston, USA, Vol. 1, pp. 1–18, 2013.
[13] Syverud, E. & Bakken, L.E., Online water wash tests of ge j85-13. Proceedings ofGT2005—ASME TurboExpo, Reno-Tahoe, USA, Vol. 1, pp. 1–9, 2005.
[14] Giljohann, S., Brutigam, K., Kuhn, S., Annasiri, S. & Russ, G., Investigations into theon—wing cleaning of commercial jet engines with co2 dry-ice blasting. Deutscher LuftundRaumfahrtkongress, Vol. 1, pp. 1–9, 2012.
[15] Rudek, A., Zitzmann, T., Russ, G. & Duignan, B., An energy-based approach to assessand predict erosive airfoil defouling. International Journal of Computational Methodsand Experimental Measurements: Materials and Contact Characterization, 6(3),pp. 476–486, 2018. [Crossref] [16] Rudek, A., Muckenhaupt, D., Kombeitz, R., Zitzmann, T., Russ, G. & Duignan, B.,Experimental and numerical investigation of co2 dry-ice based aircraft compressorcleaning. Proceedings of 13th European Conference on Turbomachinery Fluid Dynamics& Thermodynamics, Lausanne, Switzerland, Vol. 13, pp. 1–16, 2019.
[17] Rudek, A., Development and Validation of a Numerical Model of the CO2 DryiceBlasting Process for Aircraft Engine Cleaning Applications. Ph.D. thesis, School ofMechanical and Design Engineering, Dublin Institute of Technology, 2018.
[18] Grant, G. & Tabakoff, W., Erosion prediction in turbomachinery resulting fromenvironmental solid particles. Journal of Aircraft, 12(5), pp. 471–478, 1975. [Crossref] [19] Sundararajan, G. & Shewmon, P.G., The oblique impact of a hard ball againstductile, semi-infinite target materials - experiment and analysis. InternationalJournal of Impact Engineering, 6(1), pp. 3–22, 1987. [Crossref] [20] Hutchings, I.M., Winter, R.E. & Field, J.E., Solid particle erosion of metals: the removalof surface material by spherical projectiles. Proceedings of the Royal Society of LondonSeries A, Mathematical and Physical Sciences, 348(1654), pp. 379–392, 1976. [Crossref] [21] Hutchings, I.M., Macmillan, N.H. & Rickerby, D.G., Further studies of the obliqueimpact of a hard sphere against a ductile solid. International Journal of MechanicalSciences, 23(11), pp. 639–646, 1981. [Crossref] [22] Tirupataiah, Y. & Sundararajan, G., A dynamic indentation technique for the characterizationof the high strain rate plastic flow behaviour of ductile metals and alloys.Journal of Mechanics and Physics of Solids, 39(2), pp. 243–271, 1991. [Crossref] [23] Papini, M. & Spelt, J.K., Indentation-induced buckling of organic coatings part ii:measurements with impacting particles. International Journal of Mechanical Sciences,40(10), pp. 1061–1068, 1998. [Crossref] [24] Kleis, I. & Hussainova, I., Investigation of particle—wall impact process. Wear,233–235, pp. 168–173, 1999. [Crossref] [25] Papini, M. & Spelt, J.K., Organic coating removal by particle impact. Wear, 213(1–2),pp. 185–199, 1997. [Crossref] [26] Papini, M. & Spelt, J.K., Indentation-induced buckling of organic coatings part i: theoryand analysis. International Journal of Mechanical Sciences, 40(10), pp. 1043–1059,1998. [Crossref] [27] Gondret, P., Hallouin, E., Lance, M. & Petit, L., Experiments on the motion of a solidsphere toward a wall: from viscous dissipation to elastohydrodynamic bouncing. Physicsof Fluids, 11(9), pp. 2803–2805, 1999. [Crossref] [28] Gondret, P., Lance, M. & Petit, L., Bouncing motion of spherical particles in fluids.Physics of Fluids, 14(2), pp. 643–652, 2002. [Crossref] [29] Barnocky, G. & Davis, R.H., Elastohydrodynamic collision and rebound of spheres:experimental verification. Physics of Fluids, 31(6), pp. 1324–1329, 1988. [Crossref] [30] Davis, R.H., Rager, D.A. & Good, B.T., Elastohydrodynamic rebound of spheres fromcoated surfaces. Journal of Fluid Mechanics, 468, pp. 107–119, 2002. [Crossref] [31] Wall, S., John, W., Wang, H.C. & Goren, S.L., Measurements of kinetic energy lossfor particles impacting surfaces. Aerosol Science and Technology, 12(4), pp. 926–946,1990. [Crossref] [32] Djurovic, B., Jean, E., Papini, M., Tangestanian, P. & Spelt, J.K., Coating removal fromfiber-composites and aluminum using starch media blasting. Wear, 224(1), pp. 22–37,1999. [Crossref] [33] Li, D.Y., Elalem, K., Anderson, M.J. & Chiovelli, S., A microscale dynamical modelfor wear simulation. Wear, 225–229, pp. 380–386, 1999. [Crossref] [34] Chen, Q. & Li, D.Y., Computer simulation of solid particle erosion. Wear, 254(3–4),pp. 203–210, 2003. [Crossref] [35] Rudek, A., Russ, G. & Duignan, B., An experimental and numerical validation studyof particle laden supersonic flows. 9th International Conference on Multiphase Flow,Firenze, Italy, 9, pp. 1–6, 2016.
[36] Rudek, A., Russ, G. & Duignan, B., Particle laden flow investigations in special purposedry- ice blasting applications. Int International Journal of Computational Methods andExperimental Measurements: Advances in Fluid Mechanics, 4(4), pp. 393–402, 2016.