[1] Roe, K. & Siegmund,T., An irreversible cohesive zone model for interface fatigue crack growth simulation. Engineering Fracture Mechanics, 70(2), pp. 209–232, 2003.
[2] Bouvard, J., Chaboche, J., Feyel, F. & Gallerneau, F., A cohesive zone model for fatigue and creep–fatigue crack growth in single crystal super alloys. International Journal of Fatigue, 31(5), pp. 868–879, 2009.
[3] Roth, S., Hütter, G. & Kuna, M., Simulation of fatigue crack growth with a cyclic cohesive zonemodel. International Journal of Fracture, 188(1), pp. 23–45, 2014.
[4] Raous, M., Cangemi, L. & Cocu, M., A consistent model coupling adhesion, friction andunilateral contact. Computer Methods in Applied Mechanics and Engineering, 177(6), pp. 383–399, 1999.
[5] Roubíček, T., Souček, O. & Vodička, R., A model of rupturing lithospheric faults with reoccurring earthquakes. SIAM Journal on Applied Mathematics, 73(4), pp. 1460–1488, 2013.
[6] Vodička, R. & Krajníková, K., A quasi-static delamination model with rate-dependent interface damage exposed to cyclic loading. Key Engineering Materials, 774, pp. 84–89, 2018.
[7] Vodička, R., Aquasi-staticinterfacedamagemodelwithcohesivecracks:SQP–SGBEM implementation. Eng Anal Bound Elem, 62, pp. 123–140, 2016.
[8] Vodička, R. & Mantič, V., An energy based formulation of a quasi-static interface damage model with a multi linear cohesive law. Discrete & Continuous Dynamical Systems-S, 10(6), pp. 1539–1561, 2017.
[9] Vodička, R. & Krajníková, K., A numerical approach to an interface damage model under cyclic loading. Lecture Notes in Civil Engineering, ed. M. Wahab, Springer, Vol. 20, pp. 54–66, 2019.
[10] Roubíček, T., Panagiotopoulos, C. & Mantič, V., Quasistatic adhesive contact of viscoelastic bodies and its numerical treatment for very small viscosity. Zeitschrift angew Math Mech, 93, pp. 823–840, 2013.
[11] Roubíček, T., Panagiotopoulos,C. & Mantič,V., Local-solution approach to quasistatic rate-independent mixed-mode delamination. Mathematical Models and Methods in Applied Sciences, 25(7), pp. 1337–1364, 2015.
[12] Vodička, R., Mantič, V. & Roubíček, T., Energetic versus maximally-dissipative local solutions of a quasi-static rate-independent mixed-mode delamination model. Meccanica, 49(12), pp. 2933–296, 2014.
[13] Dostál, Z., An optimal algorithm for bound and equality constrained quadratic programming problems with bounded spectrum. Computing, 78(4), pp. 311–328, 2006.
[14] Dostál, Z., Optimal Quadratic Programming Algorithms, volume 23 of Springer Optimization and Its Applications. Springer: Berlin, 2009.
[15] Nocedal, J. & Wright, S., Numerical Optimization. Springer, 2006.
[16] Bonnet, M., Maier, G. & Polizzotto, C., Symmetric Galerkin boundary element method. Applied Mechanics Reviews, 51(11), pp. 669–704, 1998.
[17] Sutradhar, A., Paulino, G. & Gray, L., The symmetric Galerkin Boundary Element Method. Springer-Verlag: Berlin, 2008.
[18] Vodička, R., Mantič, V. & París, F., Symmetric variational formulation of BIE for domain decomposition problems in elasticity–an SGBEM approach for non conforming discretizations of curved interfaces. CMES— Computer Modeling in Engineering & Sciences, 17(3), pp. 173–203, 2007.
[19] Vodička, R., Mantič, V. & Roubíček,T., Quasistatic normal-compliance contact problem of visco-elastic bodies with Coulomb friction implemented by QP and SGBEM. Journal of Computational and Applied Mathematics, 315, pp. 249–272, 2017.
[20] Vodička, R., Mantič, V. & París, F., Two variational formulations for elastic domain decomposition problems solved by SGBEM enforcing coupling conditions in a weak form. Engineering Analysis with Boundary Elements, 35(1), pp. 148–155, 2011.
[21] Hertzbeg, R., Vinci, R. & Hertzberg, J., Deformation and Fracture Mechanics of Engineering Materials, 5th edn., John Wiley & Sons: New York, 2012.
[22] París, P. & Erdogan, F., A critical analysis of crack propagation laws. ASME Journal of Basic Engineering, 85(4), pp. 528–533, 1963.