1.
Schnobrich, W.C., Behaviour of RC structures predicted by finite element method. Computers and Structures, 7(3), pp. 365–376, 1977. [Crossref] 2.
Fintel, M. & Ghosh, S.K., Application of inelastic response history analysis in the aseismic design of a 31-storey frame-wall building. Earthquake Engineering and Structural Dynamics, 2, pp. 325–342, 1974.
3.
Agrawal, A.B., Jaeger, L.G. & Mufti, A.A., Response of RC shear wall underground motions. American Society of Civil Engineers Journal of Structural Division, 107, pp. 395–411, 1981.
4.
Subeidi, N.K., RC coupled shear wall structures. 11. Ultimate strength calculations. American Society of Civil Engineers Journal of Structural Engineering, 117(3), pp. 681–698, 1991. [Crossref] 5.
Paulay, T., The design of ductile RIC structural walls for earthquake resistance. Earthquake Spectra. The Professional Journal of the Earthquake Engineering Research Institute, 2(4), 783–823, 1986. [Crossref] 6.
Spacone, E., Filippou, F.C. & Taucer, F.F., Fibre beam-column model for the non-linear analysis of r/c frames: Part I, formulation. Earthquake Engineering and Structural Dynamics, 25(7), 711–725, 1996. <711::aid-eqe576>3.0.co;2-9 [Crossref] 7.
Moulin, S., Davenne, L. & Gatuingt, F., Eléments de poutre multifibre, Documentation du Code_Aster, Manuel de Référence R3.08.08, 2003. Available at: http:// www.code-aster.org (accessed 06 October 2006).
8.
Martinelli, P. & Filippou, F.C., Simulation of the shaking table test of a seven-story shear wall building. Earthquake Engineering and Structural Dynamics, 38(5), pp. 587– 607, 2009. [Crossref] 9.
Belmouden, Y. & Elharif, A., Modélisation des murs porteurs en béton armé par éléments finis multicouches. Revue Européenne des Eléments finis (REEF), 12, pp. 907–932, 2003. (Editions Lavoisier, Août.)
10.
Vulcano, A., Bertero, V.V. & Coloti, V., Analytical modeling of RC structural walls. Proceedings, 9th World Conference on Earthquake Engineering 6, Tokyo-Kyoto, 1988.
11.
Hemsas, M., Modélisation par macro-éléments du comportement non-linéaire des ouvrages à voiles porteurs en béton armé, Thèse de doctorat, Université de Bordeaux, France, 2011.
12.
Mazars, J., Application de la mécanique de l’endommagement au comportement non linéaire et à la rupture du béton de structure. Thèse de doctorat d’État, Université Paris, France VI, 1984.
13.
Kent, D.C. & Park, R., Flexural member with confined concrete. Journal of Structural Division, Proceedings of the American Society of Civil Engineers, 97(7), pp. 1969– 1990, 1971.
14.
Mander, J.B., Priestley, M.J.N. & Park, R., Theoretical stress-strain model for confined concrete. Journal of Structural Engineering, 114(8), pp. 1804–1825, 1988. [Crossref] 15.
Miao, Z.W., Lu, X.Z., Jiang, J.J. & Ye, L.P., Nonlinear FE Model for RC shear walls based on multi-layer shell element and microplaneconstitutive model. Computational Methods in Engineering and Science, EPMESC X, Sanya, Hainan,China, 2006. [Crossref] 16.
CBA-93., Algerian concrete Code 1993. Technical rules document DTR-BC National Center of Applied Research in Paraseismic Genius (CGS), Algiers, 1994.
17.
Applied Technology Council 1996. ATC-40-Seismic Evaluation and Retrofit of Concrete Buildings, Redwood City, California, 1996.
18.
FEMA 356. Pre-standard and Commentary for the Seismic Rehabilitation of Buildings, American Society of Civil Engineers, Reston, Virginia, 2000.
19.
CSI2009. SAP2000. Static and Dynamic Finite Element Analysis of Structures 14.0, Computers and Structures, Inc., Berkeley, California, 2000.
20.
PA99. Algerian Paraseismic rules, Version 2003, regular technical document, DTR B C 2 48, Paraseismic National Center of Applied Research Engineering, Algiers, 2003.