Javascript is required
Search

Acadlore takes over the publication of IJCMEM from 2025 Vol. 13, No. 3. The preceding volumes were published under a CC BY 4.0 license by the previous owner, and displayed here as agreed between Acadlore and the previous owner. ✯ : This issue/volume is not published by Acadlore.

Open Access
Research article

An Elastic-Visco-Plastic Deformation Model of Al–Li with Application to Forging

L.B. Borkowski,
J.A. Sharon,
A. Staroselsky
United Technologies Research Center, East Hartford, CT
International Journal of Computational Methods and Experimental Measurements
|
Volume 6, Issue 4, 2018
|
Pages 635-646
Received: N/A,
Revised: N/A,
Accepted: N/A,
Available online: N/A
View Full Article|Download PDF

Abstract:

Recent alloy developments have produced a new generation of Al–Li alloys that provide not only weight savings, but also many property benefits such as excellent corrosion resistance, good spectrum fatigue crack growth performance, a good strength and toughness combination and compatibility with standard manufacturing techniques. The forging of such alloys would lead to mechanical properties that closely match the aircraft engine requirements including lower weight, improved performance and a longer life. As a result, detailed analyses need to be performed to determine which material properties are best suited for a specific structure and how to achieve the required mechanical and damage tolerant properties during material processing.

We developed an integrated physics-based model for prediction of microstructure evolution and material property prediction of third-generation Al–Li alloys. In order to develop such a model, an elastic-plastic crystal plasticity model is developed and incorporated in finite element software (ANSYS). The model accounts for microstructural evolution during non-isothermal, non-homogeneous deformation and is coupled with the damage kinetics. Our model bridges the gap between dislocation dynamics and continuum mechanics scales.

Model parameters have been calibrated against lab tests including micropillar in-situ simple compression tests of Al–Li alloy 2070. Numerical predictions are verified against the lab results including stress–strain curves and crystallographic texture evolution.

Keywords: Crystallographic texture, Light weight alloys, Material characterization, Material processing, Micro-scale testing

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.


Cite this:
APA Style
IEEE Style
BibTex Style
MLA Style
Chicago Style
GB-T-7714-2015
Borkowski, L. B., Sharon, J. A., & Staroselsky, A. (2018). An Elastic-Visco-Plastic Deformation Model of Al–Li with Application to Forging. Int. J. Comput. Methods Exp. Meas., 6(4), 635-646. https://doi.org/10.2495/CMEM-V6-N4-635-646
L. B. Borkowski, J. A. Sharon, and A. Staroselsky, "An Elastic-Visco-Plastic Deformation Model of Al–Li with Application to Forging," Int. J. Comput. Methods Exp. Meas., vol. 6, no. 4, pp. 635-646, 2018. https://doi.org/10.2495/CMEM-V6-N4-635-646
@research-article{Borkowski2018AnED,
title={An Elastic-Visco-Plastic Deformation Model of Al–Li with Application to Forging},
author={L.B. Borkowski and J.A. Sharon and A. Staroselsky},
journal={International Journal of Computational Methods and Experimental Measurements},
year={2018},
page={635-646},
doi={https://doi.org/10.2495/CMEM-V6-N4-635-646}
}
L.B. Borkowski, et al. "An Elastic-Visco-Plastic Deformation Model of Al–Li with Application to Forging." International Journal of Computational Methods and Experimental Measurements, v 6, pp 635-646. doi: https://doi.org/10.2495/CMEM-V6-N4-635-646
L.B. Borkowski, J.A. Sharon and A. Staroselsky. "An Elastic-Visco-Plastic Deformation Model of Al–Li with Application to Forging." International Journal of Computational Methods and Experimental Measurements, 6, (2018): 635-646. doi: https://doi.org/10.2495/CMEM-V6-N4-635-646
BORKOWSKI L B, SHARON J A, STAROSELSKY A. An Elastic-Visco-Plastic Deformation Model of Al–Li with Application to Forging[J]. International Journal of Computational Methods and Experimental Measurements, 2018, 6(4): 635-646. https://doi.org/10.2495/CMEM-V6-N4-635-646