[1] Bardet, J.P., Synolakis, C.E., Davies, H.L., Imamura, F. & Okal, E. A. Landslide tsuna- mis: recent findings and research directions, Birkhäuser Basel, pp. 1793–1809, 2003. [Crossref] [2] Liu, P.F., Wu, T.R., Raichlen, F., Synolakis, C.E. & Borrero, J.C., Runup and run- down generated by three-dimensional sliding masses. Journal of fluid Mechanics, 536, pp. 107–144, 2005. [Crossref] [3] Løvholt, F., Pedersen, G., Harbitz, C. B., Glimsdal, S. & Kim, J., On the characteristics of landslide tsunamis. Philosophical Transactions of the Royal Society A: Mathemati- cal, Physical and Engineering Sciences, 373(2053), p. 20140376, 2015. [Crossref] [4] Available at: http://www.sms-tsunami-warning.com/pages/runup-inundation#.WJyDn- nUrKbk
[5] Available at: https://en.wikipedia.org/wiki/Vajont_Dam; https://en.wikipedia.org/ wiki/1998_Papua_New_Guinea_earthquake
[6] Yang, J. & Stern, F., Sharp interface immersed-boundary/level-set method for wave– body interactions. Journal of Computational Physics, 228(17), pp. 6590–6616, 2009. [Crossref] [7] Sanders, J., Dolbow, J.E., Mucha, P.J. & Laursen, T.A., A new method for simulating rigid body motion in incompressible two–phase flow. International Journal for Numeri- cal Methods in Fluids, 67(6), pp. 713–732, 2011. [Crossref] [8] Calderer, A., Kang, S. & Sotiropoulos, F., Level set immersed boundary method for coupled simulation of air/water interaction with complex floating structures. Journal of Computational Physics, 277, pp. 201–227, 2014.https://doi.org/ 10.1016/j.jcp.2014.08.010
[9] Schillaci, E., Jofre, L., Balcázar, N., Lehmkuhl, O. & Oliva, A., A level-set aided single- phase model for the numerical simulation of free-surface flow on unstructured meshes. Computers & Fluids, 140, pp. 97–110, 2016. [Crossref] [10] Schillaci, E., Balcázar, N., Lehmkuhl, O., Jofre, L. & Castro, J., A free surface model for the numerical simulation of oscillating water column systems. In ECFD VI: Euro- pean Conference on Computational Fluid Dynamics, July, 2014.
[11] Balcázar, N., Jofre, L., Lehmkuhl, O., Castro, J. & Rigola, J., A finite-volume/level-set method for simulating two-phase flows on unstructured grids. International Journal of Multiphase Flow, 64, pp. 55–72, 2014. [Crossref] [12] Favre, F., Antepara, O., Lehmkuhl, O. & Borrell, R., On the fast transient spoiler deployment in a NACA0012 profile using LES techniques combined with AMR and IMB methods. In ECFD VI: European Conference on Computational Fluid Dynamics, July, 2014.
[13] Antepara, O., Lehmkuhl, O., Borrell, R., Chiva, J. & Oliva, A., Parallel adaptive mesh refinement for large-eddy simulations of turbulent flows. Computers & Fluids, 110, pp. 48–61, 2015. https://doi.org/ 10.1016/j.compfluid.2014.09.050
[14] Lehmkuhl, O., Perez-Segarra, C.D., Borrell, R., Soria, M. & Oliva, A., TERMOFLU- IDS: A new Parallel unstructured CFD code for the simulation of turbulent industrial problems on low cost PC Cluster. In Parallel computational fluid dynamics 2007, Springer Berlin Heidelberg, pp. 275–282, 2007.
[15] Gottlieb, S. & Shu, C.W., Total variation diminishing Runge-Kutta schemes. Math- ematics of computation of the American Mathematical Society, 67, pp. 73–85, 1998. https://doi.org/ 10.1090/S0025-5718-98-00913-2
[16] Fadlun, E.A., Verzicco, R., Orlandi, P. & Mohd-Yusof, J., Combined Immersed-Bound- ary finite difference methods for three-dimensional complex flow simulations. Journal of Computational Physics, 161(1), pp. 35–60, 2000. [Crossref] [17] Schillaci, E., Lehmkuhl, O., Antepara, O. & Oliva, A., Direct numerical simulation of multiphase flows with unstable interfaces. Journal of Physics: Conference Series, 745(3), p. 032114. [Crossref] [18] Schillaci, E., Antepara, O., Lehmkuhl. O., Balcázar, N. & Oliva, A., Effectiveness of adaptive mesh refinement strategies in the dns of multiphase flows. Proceedings of International Symposium: Turbulent Heat and Mass Transfer VIII, 2015.
[19] Jofre, L., Lehmkuhl, O., Ventosa, J., Trias, F.X. & Oliva, A., Conservation properties of unstructured finite-volume mesh schemes for the Navier-Stokes equations. Numerical Heat Transfer, Part B: Fundamentals, 65, pp. 53–79, 2014. [Crossref] [20] Pelinovsky, E. & Poplavsky, A., Simplified model of tsunami generation by submarine landslides. Physics and Chemistry of the Earth, 21(1–2), pp. 13–17, 1996. [Crossref] [21] Wu, T.R., A numerical study of three-dimensional breaking waves and turbulence effects. Thesis Dissertation. Cornell University, 2004.