[1] Shaughnessy, E.J., Introduction to Fluid Mechanics, Oxford University Press: New York & Oxford, 2010.
[2] Quere, D., Wetting and roughness. Annual Review of Materials Research, 38, pp. 71–99, 2008. [Crossref] [3] Bashforth, F. & Adams, J.C., An Attempt to Test the Theory of Capillary Action, Cambridge University Press: Warehouse, London, 1883.
[4] Bullard, J.W. & Garboczi, E.J., Capillary rise between planar surfaces. Physical Review E, 79(011604), pp. 1–8, 2009. [Crossref] [5] Roura, P., Contact angle in thick capillaries: a derivation based on energy balance. European Journal of Physics, 28(4), pp. 27–32, 2007. [Crossref] [6] Zhmud, B.V., Tiberg, F. & Hallstensson, K., Dynamics of capillary rise. Journal of Colloid and Interface Science, 228(2), pp. 263–269, 2000. [Crossref] [7] Taroni, M. & Vella, D., Multiple equilibria in a simple elastocapillary system. Journal of Fluid Mechanics, 712, pp. 273–294, 2012. [Crossref] [8] Weber, M.W. & Shandas, R., Computational fluid dynamics analysis of microbubble formation in microfluidic flow-focusing devices. Microfluidics and Nanofluidics, 3(2), pp. 195–206, 2007. [Crossref] [9] Dadvand, A., Khoo, B.C., Shervani-Tabar, M.T. & Khalilpourazary, S., Boundary ele- ment analysis of the droplet dynamics induced by spark-generated bubble. Engineering Analysis with Boundary Elements, 36(11), pp. 1595–1603, 2012. [Crossref] [10] Lim, L.K., Hua, J.S., Wang, C.H. & Smith, K.A., Numerical simulation of cone-jet for- mation in electrohydrodynamic atomization. AIChE Journal, 57(1), pp. 57–78, 2011. [Crossref] [11] Sprittles, J.E. & Shikhmurzaev, Y.D., Finite element simulation of dynamic wetting flows as an interface formation process. Journal of Computational Physics, 233, pp. 34–65, 2013. [Crossref] [12] Sprittles, J.E. & Shikhmurzaev, Y.D., Finite element framework for describing dynamic wetting phenomena. International Journal for Numerical Methods in Fluids, 68(10), pp. 1257–1298, 2012. [Crossref] [13] Rayleigh, L., On the instability of jets. Proceedings of the London Mathematical Society, 1(1), pp. 4–13, 1878. [Crossref] [14] Batchelor, G.K., The stability of a large gas bubble rising through liquid. Journal of Fluid Mechanics, 184, pp. 399–422, 1987. [Crossref] [15] Sussman, M. & Smereka, P., Axisymmetric free boundary problems. Journal of Fluid Mechanics, 341, pp. 269–294, 1997. [Crossref] [16] Berry, J.D., Neeson, M.J., Dagastine, R.R., Chan, D.Y.C. & Tabor, R.F., Measurement of surface and interfacial tension using pendant drop tensiometry. Journal of Colloid Interface Science, 454, pp. 226–237, 2015. [Crossref] [17] Rio, O.I. & Neumann, A.W., Axisymmetric drop shape analysis: computational meth- ods for the measurement of interfacial properties from the shape and dimensions of pen- dant and sessile drops. Journal of Colloid Interface Science, 196(2), pp. 136–147, 1997. [Crossref] [18] Cabezas, M.G., Bateni, A., Montanero, J.M. & Neumann, A.W., Determination of sur- face tension and contact angle from the shapes of axisymmetric fluid interfaces without use of apex coordinates. Langmuir, 22(24), pp. 10053–10060, 2006. [Crossref] [19] Dingle, N.M., Tjiptowidjojo, K., Basaran, O.A. & Harris, M.T., A finite element based algorithm for determining interfacial tension (gamma) from pendant drop profiles. Journal of Colloid Interface Science, 286(2), pp. 647–660, 2005. [Crossref] [20] Gille, M., Gorbacheva, Y., Hahn, A., Polevikov, V. & Tobiska, L., Simulation of a pend- ing drop at a capillary tip. Communications in Nonlinear Science and Numerical Simu- lation, 26(1–3), pp. 137–151, 2015. [Crossref] [21] Danov, K.D., Dimova, S.N., Ivanov, T.B. & Novev, J.K., Shape analysis of a rotat- ing axisymmetric drop in gravitational field: Comparison of numerical schemes for real-time data processing. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 489, pp. 75–85, 2016.
[22] Versteeg, H.K. & Malalasekera, W., An Introduction to Computational Fluid Dynamics: the Finite Volume Method, Pearson Education, Harlow, 2007.
[23] Patankar, S.V., Numerical Heat Transfer and Fluid Flow, CRC Press, New York, 1980.
[24] Leonard, B.P., Order of accuracy of quick and related convection-diffusion Schemes. Applied Mathematical Modelling, 19(11), pp. 640–653, 1995. [Crossref]