Javascript is required
[1] Filiatrault, A., Christovasilis, I.P., Wanitkorkul, A. & Van de Lindt, J.W., Experimental seismic response of a full-scale light-frame wood building. Journal of Structural Engineering, 136(3), pp. 246–254, 2010.
[2] Van de Lindt, J.W., Pei, S., Pryor, S.E., Shimizu, H. & Isoda, H., Experimental seismic response of a full-scale six-story light-frame wood building. Journal of Structural Engineering, 136(10), pp. 1262–1272, 2010.
[3] Ceccotti, A., Sandhaas, C., Okabe, M., Yasumura, M., Minowa, C. & Kawai, N., SOFIE project – 3D shaking table test on a seven-storey full-scale cross-laminated building. Earthquake Engineering & Structural Dynamics, 42(13), pp. 2003–2021, 2013. [Crossref]
[4] Seim, W. & Vogt, T., Experimentelle und rechnerische Untersuchungen zur praxisgerech-ten Verankerung von Holzrahmenwänden. International Wood Construction Conference (Holzbau-Forum), Garmisch-Partenkirchen, Germany, 2013.
[5] Seim, W., Hummel, J. & Vogt, T., Earthquake design of timber structures: remarks on force-based design procedures for different wall systems. Engineering Structures, 76, pp. 124–137, 2014.
[6] Gavric, I., Fragiacomo, M. & Ceccotti, A., Cyclic behavior of CLT wall systems: Experimental tests and analytical prediction models. Journal of Structural Engineering, 141(11), 04015034(1–14), 2015.
[7] Flatscher, G., Bratulic, K. & Schickhofer, G., Experimental tests on cross-laminated timber joints and walls. Proceedings of the ICE – Structures and Buildings, 168(11), pp. 868–877, 2015.
[8] Flatscher, G. & Schickhofer, G., Shaking-table test of a cross-laminated timber structure. Proceedings of the ICE – Structures and Buildings, 168(11), pp. 878–888, 2015. [Crossref]
[9] Grossi, P., Sartori, T. & Tomasi, R., Tests on timber frame walls under in-plane forces: part 1. Proceedings of the ICE – Structures and Buildings, 168(11), pp. 826–839, 2015. [Crossref]
[10] Grossi, P., Sartori, T. & Tomasi, R., Tests on timber frame walls under in-plane forces: part 2. Proceedings of the ICE – Structures and Buildings, 168(11), pp. 840–852, 2015. [Crossref]
[11] Tomasi, R., Casagrande, D., Grossi, P. & Sartori, T., Shaking table tests on a three-storey timber building. Proceedings of the ICE – Structures and Buildings, 168(11), pp. 853–867, 2015.
[12] Casagrande, D., Grossi, P. & Tomasi, R., Shake table tests on a full-scale timber-frame building with gypsum fibre boards. European Journal of Wood and Wood Products, 74(3), 425–442, 2016.
[13] Popovski, M. & Gavric, I., Performance of a 2-story CLT house subjected to lateral loads. Journal of Structural Engineering, 142(4), E4015006(1–12), 2016.
[14] Yasumura, M., Kobayashi, K., Okabe, M., Miyake, T. & Matsumoto, K., Full-scale tests and numerical analysis of low-rise CLT structures under lateral loading. Journal of Structural Engineering, 142(4), E4015007(1–12), 2016.
[15] ETA-15/0632. X-RAD: Three-dimensional nailing plate. OIB-Austria, Vienna, Austria, 2015.
[16] EN 1995-1-1:2004/A2. Eurocode 5: Design of timber structures. Part 1-1: General. Common rules and rules for buildings. CEN, Brussels, Belgium, 2014.
[17] Polastri, A., Brandner, R. & Casagrande, D., Experimental analysis of a new connection system for CLT structures. Structures and Architecture: Concepts, Applications and Challenges, pp. 119–127, 2016.
[18] Polastri, A., Giongo, I. & Piazza, M., An innovative connection system for CLT struc-tures. Structural Engineering International, 2017. (Accepted, in press).
[19] Casagrande, D., Sartori, T. & Tomasi, R., Capacity design approach for multi-storey timber-frame buildings. INTER 2014 Meeting, Bath, United Kingdom (Paper 47-15-3), 2014.
[20] Follesa, M., Fragiacomo, M., Vassallo, D., Piazza, M., Tomasi, R., Rossi, S. & Casagrande, D., A proposal for a new background document of Chapter 8 of Eurocode 8. INTER 2015 Meeting, Šibenik, Croatia (Paper 48-7-3), 2015.
[21] Casagrande, D., Rossi, S., Tomasi, R. & Mischi, G., A predictive analytical model for the elasto-plastic behaviour of a light timber-frame shear-wall. Construction and Build-ing Materials, 102, pp. 1113–1126, 2016.
[22] Presidenza del Consiglio dei Ministri – Dipartimento della Protezione Civile: Linee guida per l’individuazione delle aree di ricovero per strutture prefabbricate di protezione civile. Direttiva del Presidente del Consiglio dei Ministri (Gazzetta Ufficiale n. 44 del 23 febbraio 2005).
[23] Presidenza del Consiglio dei Ministri - Dipartimento della Protezione Civile: Manuale tecnico per l’allestimento delle aree di ricovero per strutture prefabbricate di protezione civile. Approvato con Decreto del Capo del Dipartimento della Protezione Civile (n. 1243 del 24 marzo 2005).
[24] ETA-12/0347, European Technical Assessment. Cross Laminated Timber (CLT) – Solid wood slab elements to be used as structural elements in buildings. OIB-Austria, Vienna, Austria, 2013.
[25] EN 12512:2001/A1, Timber structures. Test methods. Cyclic testing of joints made with mechanical fasteners. CEN, Brussels, Belgium, 2005.
[26] Izzi, M., Flatscher, G., Fragiacomo, M. & Schickhofer, G., Experimental investigations and design provisions of steel-to-timber joints with annular-ringed shank nails for Cross-Laminated Timber structures. Construction and Building Materials, 122, pp. 446–457, 2016.
Search

Acadlore takes over the publication of IJCMEM from 2025 Vol. 13, No. 3. The preceding volumes were published under a CC BY 4.0 license by the previous owner, and displayed here as agreed between Acadlore and the previous owner. ✯ : This issue/volume is not published by Acadlore.

Open Access
Research article

Experimental Tests on a Hybrid Timber-Frame Wall System

M. Izzi1,2,
D. Casagrande1,
E. Sinito1,3,
G. Pasetto1,
A. Polastri1
1
CNR-IVALSA, Via Biasi, San Michele all’Adige, Italy
2
University of Trieste, Piazzale Europa, Trieste, Italy
3
X-Lam Dolomiti, Via della Stazione, Castel Ivano, Italy
International Journal of Computational Methods and Experimental Measurements
|
Volume 5, Issue 6, 2017
|
Pages 872-883
Received: N/A,
Revised: N/A,
Accepted: N/A,
Available online: 10-31-2017
View Full Article|Download PDF

Abstract:

This paper presents an innovative lateral load-resisting wall system, which is an evolution of the light-timber frame (LTF) shear walls currently available on the market. In comparison to traditional LTF walls, the novelty aspect is the use of cross-laminated timber (CLT) beams and studs instead of solid timber elements. Thanks to this ‘hybrid’ approach, this new system combines some peculiar aspects of LTF structures (such as the limited weight and the high dissipative behaviour) with the potentials of CLT. Moreover, the use of CLT elements limits the issues due to the compressive deformations on bottom beams and permits to employ some innovative connections with high mechanical properties. Cyclic shear tests are carried out on two configurations of interest, assembled by considering different layouts of the load-bearing elements. Test results are compared to the experimental data obtained on similar LTF systems and differences are critically discussed.

Keywords: Keywords Cross-Laminated Timber, Cyclic Shear Test, Emergency Housing Facilities, Hybrid Structures, Light-Framed Wall System, Seismic Behaviour

Acknowledgments

The experimental results presented in the paper were obtained in the framework of the TRE3 research project, funded by the Fondazione CARITRO – Cassa di Risparmio di Trento e Rovereto (Trento, Italy). The industrial partners X-Lam Dolomiti (Castel Ivano, Italy) and Rothoblaas (Cortaccia, Italy) are gratefully acknowledged for providing the materials used in the tests. Mario Pinna and Diego Magnago are gratefully acknowledged for preparation and running all the tests. Further acknowledgements are extended to Dr. Tiziano Sartori, who provided some useful remark on typical light-timber frame wall systems.

References
[1] Filiatrault, A., Christovasilis, I.P., Wanitkorkul, A. & Van de Lindt, J.W., Experimental seismic response of a full-scale light-frame wood building. Journal of Structural Engineering, 136(3), pp. 246–254, 2010.
[2] Van de Lindt, J.W., Pei, S., Pryor, S.E., Shimizu, H. & Isoda, H., Experimental seismic response of a full-scale six-story light-frame wood building. Journal of Structural Engineering, 136(10), pp. 1262–1272, 2010.
[3] Ceccotti, A., Sandhaas, C., Okabe, M., Yasumura, M., Minowa, C. & Kawai, N., SOFIE project – 3D shaking table test on a seven-storey full-scale cross-laminated building. Earthquake Engineering & Structural Dynamics, 42(13), pp. 2003–2021, 2013. [Crossref]
[4] Seim, W. & Vogt, T., Experimentelle und rechnerische Untersuchungen zur praxisgerech-ten Verankerung von Holzrahmenwänden. International Wood Construction Conference (Holzbau-Forum), Garmisch-Partenkirchen, Germany, 2013.
[5] Seim, W., Hummel, J. & Vogt, T., Earthquake design of timber structures: remarks on force-based design procedures for different wall systems. Engineering Structures, 76, pp. 124–137, 2014.
[6] Gavric, I., Fragiacomo, M. & Ceccotti, A., Cyclic behavior of CLT wall systems: Experimental tests and analytical prediction models. Journal of Structural Engineering, 141(11), 04015034(1–14), 2015.
[7] Flatscher, G., Bratulic, K. & Schickhofer, G., Experimental tests on cross-laminated timber joints and walls. Proceedings of the ICE – Structures and Buildings, 168(11), pp. 868–877, 2015.
[8] Flatscher, G. & Schickhofer, G., Shaking-table test of a cross-laminated timber structure. Proceedings of the ICE – Structures and Buildings, 168(11), pp. 878–888, 2015. [Crossref]
[9] Grossi, P., Sartori, T. & Tomasi, R., Tests on timber frame walls under in-plane forces: part 1. Proceedings of the ICE – Structures and Buildings, 168(11), pp. 826–839, 2015. [Crossref]
[10] Grossi, P., Sartori, T. & Tomasi, R., Tests on timber frame walls under in-plane forces: part 2. Proceedings of the ICE – Structures and Buildings, 168(11), pp. 840–852, 2015. [Crossref]
[11] Tomasi, R., Casagrande, D., Grossi, P. & Sartori, T., Shaking table tests on a three-storey timber building. Proceedings of the ICE – Structures and Buildings, 168(11), pp. 853–867, 2015.
[12] Casagrande, D., Grossi, P. & Tomasi, R., Shake table tests on a full-scale timber-frame building with gypsum fibre boards. European Journal of Wood and Wood Products, 74(3), 425–442, 2016.
[13] Popovski, M. & Gavric, I., Performance of a 2-story CLT house subjected to lateral loads. Journal of Structural Engineering, 142(4), E4015006(1–12), 2016.
[14] Yasumura, M., Kobayashi, K., Okabe, M., Miyake, T. & Matsumoto, K., Full-scale tests and numerical analysis of low-rise CLT structures under lateral loading. Journal of Structural Engineering, 142(4), E4015007(1–12), 2016.
[15] ETA-15/0632. X-RAD: Three-dimensional nailing plate. OIB-Austria, Vienna, Austria, 2015.
[16] EN 1995-1-1:2004/A2. Eurocode 5: Design of timber structures. Part 1-1: General. Common rules and rules for buildings. CEN, Brussels, Belgium, 2014.
[17] Polastri, A., Brandner, R. & Casagrande, D., Experimental analysis of a new connection system for CLT structures. Structures and Architecture: Concepts, Applications and Challenges, pp. 119–127, 2016.
[18] Polastri, A., Giongo, I. & Piazza, M., An innovative connection system for CLT struc-tures. Structural Engineering International, 2017. (Accepted, in press).
[19] Casagrande, D., Sartori, T. & Tomasi, R., Capacity design approach for multi-storey timber-frame buildings. INTER 2014 Meeting, Bath, United Kingdom (Paper 47-15-3), 2014.
[20] Follesa, M., Fragiacomo, M., Vassallo, D., Piazza, M., Tomasi, R., Rossi, S. & Casagrande, D., A proposal for a new background document of Chapter 8 of Eurocode 8. INTER 2015 Meeting, Šibenik, Croatia (Paper 48-7-3), 2015.
[21] Casagrande, D., Rossi, S., Tomasi, R. & Mischi, G., A predictive analytical model for the elasto-plastic behaviour of a light timber-frame shear-wall. Construction and Build-ing Materials, 102, pp. 1113–1126, 2016.
[22] Presidenza del Consiglio dei Ministri – Dipartimento della Protezione Civile: Linee guida per l’individuazione delle aree di ricovero per strutture prefabbricate di protezione civile. Direttiva del Presidente del Consiglio dei Ministri (Gazzetta Ufficiale n. 44 del 23 febbraio 2005).
[23] Presidenza del Consiglio dei Ministri - Dipartimento della Protezione Civile: Manuale tecnico per l’allestimento delle aree di ricovero per strutture prefabbricate di protezione civile. Approvato con Decreto del Capo del Dipartimento della Protezione Civile (n. 1243 del 24 marzo 2005).
[24] ETA-12/0347, European Technical Assessment. Cross Laminated Timber (CLT) – Solid wood slab elements to be used as structural elements in buildings. OIB-Austria, Vienna, Austria, 2013.
[25] EN 12512:2001/A1, Timber structures. Test methods. Cyclic testing of joints made with mechanical fasteners. CEN, Brussels, Belgium, 2005.
[26] Izzi, M., Flatscher, G., Fragiacomo, M. & Schickhofer, G., Experimental investigations and design provisions of steel-to-timber joints with annular-ringed shank nails for Cross-Laminated Timber structures. Construction and Building Materials, 122, pp. 446–457, 2016.

Cite this:
APA Style
IEEE Style
BibTex Style
MLA Style
Chicago Style
GB-T-7714-2015
Izzi, M., Casagrande, D., Sinito, E., Pasetto, G., & Polastri, A. (2017). Experimental Tests on a Hybrid Timber-Frame Wall System. Int. J. Comput. Methods Exp. Meas., 5(6), 872-883. https://doi.org/10.2495/CMEM-V5-N6-872-883
M. Izzi, D. Casagrande, E. Sinito, G. Pasetto, and A. Polastri, "Experimental Tests on a Hybrid Timber-Frame Wall System," Int. J. Comput. Methods Exp. Meas., vol. 5, no. 6, pp. 872-883, 2017. https://doi.org/10.2495/CMEM-V5-N6-872-883
@research-article{Izzi2017ExperimentalTO,
title={Experimental Tests on a Hybrid Timber-Frame Wall System},
author={M. Izzi and D. Casagrande and E. Sinito and G. Pasetto and A. Polastri},
journal={International Journal of Computational Methods and Experimental Measurements},
year={2017},
page={872-883},
doi={https://doi.org/10.2495/CMEM-V5-N6-872-883}
}
M. Izzi, et al. "Experimental Tests on a Hybrid Timber-Frame Wall System." International Journal of Computational Methods and Experimental Measurements, v 5, pp 872-883. doi: https://doi.org/10.2495/CMEM-V5-N6-872-883
M. Izzi, D. Casagrande, E. Sinito, G. Pasetto and A. Polastri. "Experimental Tests on a Hybrid Timber-Frame Wall System." International Journal of Computational Methods and Experimental Measurements, 5, (2017): 872-883. doi: https://doi.org/10.2495/CMEM-V5-N6-872-883
Izzi M., Casagrande D., Sinito E., et al. Experimental Tests on a Hybrid Timber-Frame Wall System[J]. International Journal of Computational Methods and Experimental Measurements, 2017, 5(6): 872-883. https://doi.org/10.2495/CMEM-V5-N6-872-883